Categories
Analysis Forecast Coronavirus COVID-19 Industry Impact Market Price Analysis Market Reports Market Size News

Aquarium Heater Market to Witness Huge Growth by 2026 | Aqua Design Amano, EHEIM, Marukan, etc.

Aquarium Heater Market with Covid-19 Impact Analysis: Forecast to Show Spurring Growth by 2020-2026” to its research database. The global Aquarium Heater Market research report is an output of a brief assessment and an extensive analysis of practical data collected from the global Aquarium Heater Market. The data are collected on the basis of industrial drifts and demands related to the services & products. The meticulously collected data offers for the process of effortless strategic planning. It also helps in creating promising business alternatives.

Free Sample Report + All Related Graphs & Charts @ https://www.statsandreports.com/request-sample/451548-global-united-states-european-union-and-china-aquarium-heater-market-research-report-2019-2025

North America accounted for the largest share in the Aquarium Heater market in 2020 owing to the increasing collaboration activities by key players over the forecast period

A perfect demonstration of the recent expansions and innovative technological resolutions offer our customers the liberty to develop their decision-making skills. This ultimately helps to work with perfect business alternatives and apply elegant implementations. The global Aquarium Heater Market report emphasizes the latest developments, growth, new opportunities, and dormant tricks. It provides an all-inclusive stance of the global Aquarium Heater Market. Requirement proportion and innovation of modern technologies are some of the key factors covered in the global Aquarium Heater Market report.

Our Free Complimentary Sample Report Accommodate a Brief Introduction of the research report, TOC, List of Tables and Figures, Competitive Landscape and Geographic Segmentation, Innovation and Future Developments Based on Research Methodology.

This helps to understand the overall market and to recognize the growth opportunities in the global Aquarium Heater Market. The report also includes a detailed profile and information of all the major market players currently active in the global Aquarium Heater Market. The companies covered in the report can be evaluated on the basis of their latest developments, financial and business overview, product portfolio, key trends in the market, long-term and short-term business strategies by the companies in order to stay competitive in the market.

We are currently offering Quarter-end Discount to all our high potential clients and would really like you to avail the benefits and leverage your analysis based on our report.

Grab Your Report at an Impressive Discount (Use Corporate email ID to Get Higher Priority) @ https://www.statsandreports.com/check-discount/451548-global-united-states-european-union-and-china-aquarium-heater-market-research-report-2019-2025

Some of the Major Market Player Profile Included in This Report is:

Aqua Design Amano, EHEIM, Marukan, Hagan, Tetra

On the basis of product, this report displays the production, revenue, price, market share and growth rate of each type, primarily split into Traditional Heater, Constant Temperature Heater and Other.

On the basis of the end users/applications, this report focuses on the status and outlook for major applications/end users, consumption (sales), market share and growth rate for each application, including Store, Family, Office and Other.

The greater part of the data gathered is presented in graphical form along with the related statistics. The global Aquarium Heater Market report demonstrates the functioning of the main market players, suppliers, and dealers in detail. The report also highlights the restraints and drivers impacting the global Aquarium Heater Market.

Note – In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

(*If you have any special requirements, please let us know and we will offer you the report as you want.)

The report analyzes various decisive constraints such as item price, production capability, profit & loss statistics, and transportation & delivery channels influencing the global Aquarium Heater Market. It also covers the analysis of other important elements such as market demands, advancements, and product developments, various organizations, and processes impacting the global Aquarium Heater Market. The global Aquarium Heater Market research report emphasizes a variety of modifications done that improve the work process of the global Aquarium Heater Market.

Aquarium Heater Market
Aquarium Heater Market

Get Customized Report in your Inbox within 24 hours at: https://www.statsandreports.com/enquiry-before/451548-global-united-states-european-union-and-china-aquarium-heater-market-research-report-2019-2025

A methodically structured Aquarium Heater Market research report is based on the primary and secondary resource. It portrays the data collected in a more communicative and expressive way allowing the customer to develop a well-structured plan to develop and expand their businesses in the estimated duration.

Promising Regions & Countries Mentioned in The Aquarium Heater Market Report:

North America: United States, Canada, and Mexico.
South & Central America: Argentina, Chile, and Brazil.
Middle East & Africa: Saudi Arabia, UAE, Turkey, Egypt and South Africa.
Europe: UK, France, Italy, Germany, Spain, and Russia.
Asia-Pacific: India, China, Japan, South Korea, Indonesia, Singapore, and Australia.

Buy Full Copy Global Aquarium Heater Report 2020-2026 @ https://www.statsandreports.com/placeorder?report=451548-global-united-states-european-union-and-china-aquarium-heater-market-research-report-2019-2025&type=SingleUser

COVID-19- Current Scenario & Potential Impact

Various communities and companies are doing their best to function and perform, and eventually cope with the challenges raised by COVID-19 pandemic. The COVID-19 pandemic had a negative impact on the market size for the year 2020, with small and medium scale companies struggling to sustain their businesses in the near-term future. Industry leaders are now focusing to create new business practices to deal with crisis situations like COVID-19 pandemic.

The report presents a strategic analysis of the Aquarium Heater market through key drivers, challenges, opportunities, and growth contributors. Further, the market attractiveness index is provided based on five forces analysis.

The Aquarium Heater market delivers value to customers through reliable market size for 2019 on the basis of demand and price analysis. The report presents near term and long term forecast of the addressable Aquarium Heater market size to 2026.

(We customize your report according to your research need. Ask our sales team for report customization. [email protected] )

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Us

Stats and Reports is a global market research and consulting service provider specialized in offering wide range of business solutions to their clients including market research reports, primary and secondary research, demand forecasting services, focus group analysis and other services. We understand that how data is important in today’s competitive environment and thus, we have collaborated with industry’s leading research providers who works continuously to meet the ever-growing demand for market research reports throughout the year.

Contact:

Stats and Reports
Mangalam Chamber, Office No – 16, Paud Road
Sankalp Society, Kothrud, Pune, Maharashtra 411038
Phone: +1 650-646-3808
Email: [email protected]
Website: https://www.statsandreports.com
Follow Us on: LinkedIN | Twitter |

Categories
Coronavirus COVID-19 Industry Impact Market Price Analysis Market Reports News

The Public Safety LTE & Mobile Broadband Market Opportunities, Challenges, Strategies & Forecasts 2017 – 2030

The “Public Safety LTE & Mobile Broadband Market: 2017 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the global public safety LTE market, besides touching upon the wider LMR and mobile broadband industries. In addition to covering the business case, market drivers, challenges, enabling technologies, applications, key trends, standardization, spectrum availability/allocation, regulatory landscape, deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies for public safety LTE, the report presents comprehensive forecasts for mobile broadband, LMR, and public safety LTE subscriptions from 2017 till 2030. Also covered are unit shipment and revenue forecasts for public safety LTE infrastructure, devices, integration services and management solutions. In addition, the report tracks public safety LTE service revenues, over both private and commercial networks.

Driven by demand for both dedicated and secure MVNO networks, The annual investments in public safety LTE infrastructure will surpass $800 Million by the end of 2017, supporting ongoing deployments in multiple frequency bands across the 400/450 MHz, 700 MHz, 800 MHz, and higher frequency ranges. The market – which includes base stations (eNBs), mobile core and transport network equipment – is further expected to grow at a CAGR of nearly 45% over the next three years. By 2020, these infrastructure investments will be complemented by up to 3.8 Million LTE device shipments, ranging from smartphones and ruggedized handheld terminals to vehicular routers and IoT modules.

Key Findings on “Public Safety LTE & Mobile Broadband Market
– The annual investments in public safety LTE infrastructure will surpass $800 Million by the end of 2017. The market – which includes base stations (eNBs), mobile core and transport network equipment – is further expected to grow at a CAGR of nearly 45% over the next three years.

– By 2020, these infrastructure investments will be complemented by up to 3.8 Million LTE device shipments, ranging from smartphones and ruggedized handheld terminals to vehicular routers and IoT modules.

– A number of dedicated public safety LTE networks are already operational across the globe, ranging from nationwide systems in the oil-rich GCC region to citywide networks in Spain, China, Pakistan, Laos and Kenya.

– At present, more than 45% of all public safety LTE engagements –  including in-service, planned, pilot, and demo networks – utilize spectrum in the 700 MHz range, primarily Bands 14 and 28.

– Due to the unavailability of ProSe-capable chipsets and devices, several public safety stakeholders including the United Kingdom Home Office are considering the continued use of LMR terminals to support direct-mode operation, as they migrate to LTE networks.

– The wider critical communications industry is continuing to consolidate with several prominent M&A deals such as Motorola Solutions’ recent acquisition of carrier-integrated PTT-over-cellular platform provider Kodiak Networks, and Hytera Communications’  takeover of the Sepura Group – a well known provider of TETRA, DMR, P25 and LTE systems.

Get Free PDF Sample Copy of this report back to perceive the structure of the whole report: (Including Full TOC, List of Tables & Figures, Chart) @https://www.supplydemandmarketresearch.com/home/contact/38143?ref=Sample-and-Brochure&toccode=SDMRTE38143

Report Scope

The report covers the following topics:
– Business case for public safety LTE and mobile broadband including market drivers, barriers, deployment models, economics, and funding strategies
– LTE network architecture and key elements comprising devices, RAN, mobile core (EPC, policy and application functions), and transport networks
– Key enabling technologies including group communications, MCPTT, ProSe (Proximity Services), IOPS (Isolated E-UTRAN operation for Public Safety), deployable LTE systems, HPUE (High-Power User Equipment), QPP (QoS, Priority & Preemption), and end-to-end security
– Public safety LTE application usage including mission-critical voice, mobile video, situational awareness, aerial surveillance, bandwidth-intensive field data applications, and emerging applications such as AR (Augmented Reality)
– Case studies of over 20 public safety LTE engagements worldwide, and analysis of  large-scale nationwide projects including FirstNet in the United States, ESN in the United Kingdom, and Safe-Net in South Korea
– Opportunities for commercial mobile operators including spectrum leasing, priority service offerings, BYON (Build Your Own Network) platforms, and operator-branded public safety LTE platforms
– Spectrum availability and allocation for public safety LTE across the global, regional and national regulatory domains
– Standardization, regulatory and collaborative initiatives
– Industry roadmap and value chain
– Profiles and strategies of over 570 ecosystem players including LTE infrastructure & device OEMs, public safety system integrators, and application specialists
– Exclusive interview transcripts from 11 ecosystem players across the public safety LTE value chain: DSB (Directorate for Civil Protection, Norway), Ericsson, Airbus Defence and Space, Harris Corporation, CND (Core Network Dynamics), Bittium, Sepura, Sierra Wireless, Sonim Technologies, Kodiak Networks, and Soliton Systems
– Strategic recommendations for LMR equipment suppliers, public safety system integrators, LTE infrastructure, device & chipset suppliers, public safety agencies & stakeholders, and commercial & private mobile operators
– Market analysis and forecasts from 2017 till 2030

Report Coverage

Public Safety LTE Infrastructure
Submarkets
– RAN (Radio Access Network)
– Mobile Core (EPC, Policy & Application Functions)
– Mobile Backhaul & Transport

RAN Base Station (eNB) Mobility Categories
– Fixed Base Stations
– Deployable Base Stations

RAN Base Station (eNB) Cell Size Categories
– Macrocells
– Small Cells

Deployable RAN Base Station (eNB) Form Factor Categories
– NIB (Network-in-a-Box)
– Vehicular Platforms
– Airborne Platforms
– Maritime Platforms

Mobile Backhaul & Transport Network Technology Categories
– Fiber & Wireline
– Microwave
– Satellite

Public Safety LTE Management & Integration Solutions
Submarkets
– Network Integration & Testing
– Device Management & User Services
– Managed Services, Operations & Maintenance
– Cybersecurity

Public Safety LTE Devices
Submarkets
– Private LTE
– Commercial LTE

Form Factor Categories
– Smartphones & Handportable Terminals
– Vehicle-Mounted Routers & Terminals
– Stationary CPEs
– Tablets & Notebook PCs
– USB Dongles, Embedded IoT Modules & Others

Public Safety LTE Subscriptions & Service Revenue
Submarkets
– Private LTE
– Commercial LTE

Public Safety Broadband over Private Mobile Networks
Submarkets
– Private LTE
– Private WiMAX

Public Safety Broadband Subscriptions over Commercial Mobile Networks
Submarkets
– 3G
– WiMAX
– LTE

Mobile Broadband Subscriptions
Submarkets
– 3G
– WiMAX
– LTE
– 5G NR (New Radio)

LMR Subscriptions
Submarkets
– Analog
– DMR
– dPMR, NXDN & PDT
– P25
– TETRA
– Tetrapol
– Others

LMR Narrowband Data Subscriptions
Submarkets
– P25 – Phase 1
– P25 – Phase 2
– TETRA
– TEDS
– Tetrapol
– Others

Public Safety LTE Applications
Submarkets
– Mission-Critical HD Voice & Group Communications
– Video & High-Resolution Imagery
– Messaging & Presence Services
– Secure Mobile Broadband Access
– Location Services & Mapping
– Enhanced CAD (Computer Aided Dispatching)
– Situational Awareness
– Telemetry, Control and Remote Diagnostics
– AR (Augmented Reality) & Emerging Applications

Regional Segmentation
The following regional markets are covered:
– Asia Pacific
– Eastern Europe
– Latin & Central America
– Middle East & Africa
– North America
– Western Europe

Key Questions Answered
The report provides answers to the following key questions:
– How big is the public safety LTE opportunity?
– What trends, challenges and barriers are influencing its growth?
– How is the market evolving by segment and region?
– What will the market size be in 2020 and at what rate will it grow?
– Which regions and submarkets will see the highest percentage of growth?
– How does standardization impact the adoption of LTE for public safety?
– What is the status of dedicated public safety LTE networks and secure MVNO offerings across the globe?
– When will the public safety sector witness the large-scale commercialization of key enabling technologies such as MCPTT, ProSe, IOPS, and HPUE?
– What opportunities exist for commercial LTE service providers and private LMR network operators?
– What are the prospects of NIB (Network-in-a-Box), vehicular, airborne and maritime deployable LTE platforms?
– Is there a substantial market opportunity for public safety LTE networks operating in Band 31 (450 MHz), and newer frequency bands  such as Bands 68 and 72?
– How can public safety stakeholders leverage unused spectrum capacity to ensure the economic viability of dedicated LTE networks?
– Who are the key market players and what are their strategies?
– What strategies should system integrators, vendors, and mobile operators adopt to remain competitive?

Grab Best Discount on This Market research report [Single User ]| Multi User | company Users] @https://www.supplydemandmarketresearch.com/home/contact/38143?ref=Discount&toccode=SDMRTE38143

Table of Content

1  Chapter  1:  Introduction
1.1  Executive  Summary
1.2  Topics  Covered
1.3  Forecast  Segmentation
1.4  Key  Questions  Answered
1.5  Key  Findings
1.6  Methodology
1.7  Target  Audience
1.8  Companies  &  Organizations  Mentioned

2  Chapter  2:  An  Overview  of  the  Public  Safety  Mobile  Broadband  Market
2.1  Narrowband  LMR  (Land  Mobile  Radio)  Systems  in  Public  Safety
2.1.1  LMR  Market  Size
2.1.1.1  Analog  LMR
2.1.1.2  DMR
2.1.1.3  dPMR,  NXDN  &  PDT
2.1.1.4  P25
2.1.1.5  TETRA
2.1.1.6  Tetrapol
2.1.1.7  Other  LMR  Technologies
2.1.2  The  Limitations  of  LMR  Networks  for  Non-Voice  Services
2.2  Adoption  of  Commercial  Mobile  Broadband  Technologies  for  Public  Safety
2.2.1  Why  Use  Commercial  Mobile  Broadband  Technologies?
2.2.2  The  Perceived  Role  of  Mobile  Broadband  in  Public  Safety  Scenarios
2.2.2.1  Partnerships  with  Commercial  Mobile  Operators
2.2.2.2  Private  LTE  and  WiMAX  Networks
2.2.3  Can  Mobile  Broadband  Technologies  Replace  LMR  Systems?
2.2.4  How  Big  is  the  Commercial  Mobile  Broadband  Market?
2.2.5  Will  the  Public  Safety  Witness  the  Same  Level  of  Growth  as  the  Consumer  Sector?
2.2.6  What  are  the  Growth  Drivers?
2.3  Why  LTE?
2.3.1  Performance  Metrics
2.3.2  Coexistence,  Interoperability  and  Spectrum  Flexibility
2.3.3  A  Thriving  Ecosystem
2.3.4  Economic  Feasibility
2.4  Public  Safety  LTE  Technology  &  Architecture
2.4.1  UE  (User  Equipment)
2.4.1.1  Smartphones  &  Handportable  Terminals
2.4.1.2  Vehicle-Mounted  Routers  &  Terminals
2.4.1.3  Stationary  CPEs
2.4.1.4  Tablets  &  Notebook  PCs
2.4.1.5  USB  Dongles,  Embedded  IoT  Modules  &  Others
2.4.2  E-UTRAN  –  The  LTE  RAN  (Radio  Access  Network)
2.4.2.1  eNB  Base  Stations
2.4.2.2  TDD  vs.  FDD
2.4.3  Transport  Network
2.4.4  EPC  (Evolved  Packet  Core)  –  The  LTE  Mobile  Core
2.4.4.1  SGW  (Serving  Gateway)
2.4.4.2  PGW  (Packet  Data  Network  Gateway)
2.4.4.3  MME  (Mobility  Management  Entity)
2.4.4.4  HSS  (Home  Subscriber  Server)
2.4.4.5  PCRF  (Policy  Charging  and  Rules  Function)
2.4.5  IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
2.4.5.1  IMS  Core  &  VoLTE
2.4.5.2  eMBMS  (Enhanced  Multimedia  Broadcast  Multicast  Service)
2.4.5.3  ProSe  (Proximity  Services)
2.4.5.4  Group  Communication  &  Mission-Critical  Services
2.4.6  Gateways  for  LTE-LMR  Interworking
2.5  LTE-Advanced  &  5G:  Implications  for  Public  Safety
2.5.1  The  Move  Towards  LTE-Advanced  Networks
2.5.2  LTE  Advanced  Pro:  Accelerating  Public  Safety  LTE  Rollouts
2.5.3  5G  Requirements:  Looking  Towards  the  Future
2.5.4  5G  Applications  for  Public  Safety
2.6  Support  for  Roaming  in  Public  Safety  LTE  Networks
2.6.1  Inter-System  Roaming
2.6.2  Intra-System  Roaming  with  External  LTE  Networks
2.7  Public  Safety  LTE  Deployment  Models
2.7.1  Private  Public  Safety  LTE
2.7.2  Shared  Commercial  Public  Safety  LTE:  Private-Public  Partnerships
2.7.3  Public  Safety  LTE  Access  over  Commercial  Mobile  Networks
2.7.4  Hosted-Core  Public  Safety  LTE  Networks
2.8  Funding  Models  for  Private  Public  Safety  LTE  Network  Deployments
2.8.1  BOO  (Built,  Owned  and  Operated)  by  Integrator/Vendor
2.8.2  Owned  and  Operated  by  the  Government  Authority
2.8.3  Local  Agency  Hosted  Core
2.8.4  Multiple  Networks
2.9  Market  Growth  Drivers
2.9.1  Higher  Throughput  and  Low  Latency
2.9.2  Economic  Feasibility
2.9.3  Bandwidth  Flexibility
2.9.4  Spectral  Efficiency
2.9.5  Regional  Interoperability
2.9.6  Lack  of  Competition  from  Other  Standards
2.9.7  Endorsement  from  the  Public  Safety  Community
2.9.8  Commitments  by  Infrastructure  and  Device  Vendors
2.9.9  QoS  (Quality  of  Service),  Priority  &  Preemption  Provisioning
2.9.10  Group  Voice  &  Multimedia  Communications  Support
2.10  Market  Barriers
2.10.1  Spectrum  Allocation
2.10.2  Budgetary  Issues
2.10.3  Delayed  Standardization
2.10.4  Dependency  on  New  Chipsets  &  Devices  for  Dedicated  Public  Safety  Features
2.10.5  Smaller  Coverage  Footprint  than  LMR  Systems

3  Chapter  3:  Key  Enabling  Technologies  for  Public  Safety  LTE
3.1  Mission-Critical  Voice  &  Group  Communications
3.1.1  Group  Communications
3.1.1.1  GCSE  (Group  Communication  System  Enablers)
3.1.1.2  eMBMS  (Multimedia  Broadcast  Multicast  Service)
3.1.1.3  Additional  Group-Based  Enhancements
3.1.2  MCPTT  (Mission-Critical  PTT)
3.1.2.1  Architecture  &  Functional  Capabilities
3.1.2.2  Performance  Comparison  with  LMR  Voice  Services
3.1.3  Mission-Critical  Data  &  Video
3.2  D2D  (Device-to-Device)  Functionality
3.2.1  ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.2  ProSe  Service  Classification
3.2.2.1  Discovery
3.2.2.2  Direct  Communication
3.2.3  Public  Safety  Applications  for  ProSe
3.2.3.1  Direct  Communication  for  Coverage  Extension
3.2.3.2  Direct  Communication  within  Network  Coverage
3.2.3.3  Infrastructure  Failure  &  Emergency  Situations
3.2.3.4  Additional  Capacity  for  Incident  Response  &  Special  Events
3.2.3.5  Discovery  Services  for  Disaster  Relief
3.3  IOPS  (Isolated  E-UTRAN  Operation  for  Public  Safety)
3.3.1  Ensuring  Resilience  and  Service  Continuity  for  Public  Safety  LTE  Users
3.3.2  Localized  EPC  &  Application  Capabilities
3.3.3  Support  for  Regular  &  Nomadic  eNBs
3.3.4  Isolated  E-UTRAN  Scenarios
3.3.4.1  No  Backhaul
3.3.4.2  Limited  Backhaul  for  Signaling  Only
3.3.4.3  Limited  Backhaul  for  Signaling  &  User  Data
3.4  Deployable  LTE  Systems
3.4.1  Key  Operational  Capabilities
3.4.1.1  eNB-Only  Systems  for  Coverage  &  Capacity  Enhancement
3.4.1.2  Mobile  Core  Integrated  Systems  for  Autonomous  Operation
3.4.1.3  Backhaul  Connectivity
3.4.2  NIB  (Network-in-a-Box):  Self-Contained  Portable  Systems
3.4.2.1  Backpacks
3.4.2.2  Tactical  Cases
3.4.3  Vehicular  Platforms
3.4.3.1  COW  (Cell-on-Wheels)
3.4.3.2  COLT  (Cell-on-Light  Truck)
3.4.3.3  SOW  (System-on-Wheels)
3.4.3.4  VNS  (Vehicular  Network  System)
3.4.4  Airborne  Platforms
3.4.4.1  Drones
3.4.4.2  Balloons
3.4.4.3  Other  Aircraft
3.4.5  Maritime  Platforms
3.5  UE  Enhancements
3.5.1  Ruggedization  for  Meet  Public  Safety  Usage  Requirements
3.5.2  Dedicated  PTT-Buttons  &  Functional  Enhancements
3.5.3  Long-Lasting  Batteries
3.5.4  HPUE  (High-Power  User  Equipment)
3.6  QPP  (QoS,  Priority  &  Preemption)
3.6.1  3GPP  Specified  QPP  Capabilities
3.6.1.1  Access  Priority:  ACB  (Access  Class  Barring)
3.6.1.2  Admission  Priority  &  Preemption:  ARP  (Allocation  and  Retention  Priority)
3.6.1.3  Traffic  Scheduling  Priority:  QCI  (QoS  Class  Indicator)
3.6.1.4  Emergency  Scenarios:  eMPS  (Enhanced  Multimedia  Priority  Service)
3.6.2  Additional  QPP  Enhancements
3.7  End-to-End  Security
3.7.1  3GPP  Specified  LTE  Security  Architecture
3.7.1.1  Device  Security
3.7.1.2  Air  Interface  &  E-UTRAN  Security
3.7.1.3  Mobile  Core  &  Transport  Network  Security
3.7.2  Application  Domain  Protection  &  E2EE  (End-to-End  Encryption)
3.7.3  Enhancements  to  Support  National  Security  &  Additional  Requirements
3.8  Complimentary  Technologies  &  Concepts
3.8.1  Satellite  Communications
3.8.2  High  Capacity  Microwave  Links
3.8.3  Spectrum  Sharing  &  Aggregation
3.8.4  MOCN  (Multi-Operator  Core  Network)
3.8.5  DECOR  (Dedicated  Core)
3.8.6  Network  Slicing
3.8.7  NFV  (Network  Functions  Virtualization)
3.8.8  SDN  (Software  Defined  Networking)
3.8.9  C-RAN  (Centralized  RAN)
3.8.10  MEC  (Multi-Access  Edge  Computing)

4  Chapter  4:  Review  of  Major  Public  Safety  LTE  Engagements
4.1  FirstNet  (First  Responder  Network)  Authority
4.1.1  Contract  Award
4.1.1.1  Leveraging  AT&T’s  Commercial  LTE  Network  Assets
4.1.1.2  Band  14  Nationwide  Public  Safety  Broadband  Network  Buildout
4.1.1.3  Interoperability  with  Opt-Out  Statewide  Networks
4.1.2  Present  Status
4.1.2.1  Buildout  Activity
4.1.2.2  Disaster  Preparedness  &  Network  Hardening
4.1.2.3  Readiness  of  Deployable  Network  Assets
4.1.2.4  Opt-In  States  &  Territories
4.1.2.5  Alternative  Network  Plans  &  Potential  Opt-Outs
4.1.2.6  App  &  Device  Ecosystem
4.1.3  Pricing  for  FirstNet  Subscription  Packages
4.1.4  Deployment  Plan
4.1.4.1  2017:  IOC  (Initial  Operating  Capability)  Stage  1  &  Initial  Buildout
4.1.4.2  2018  –  2021:  IOC  Stages  2  –  5
4.1.4.3  2022:  FOC  (Final  Operational  Capability)
4.1.4.4  2023  &  Beyond:  Additional  Technology  Upgrades
4.1.5  Key  Applications to be continued @https://www.supplydemandmarketresearch.com/the-public-safety-lte-mobile-broadband-market-38143

Contact US

Supply Demand Market Research
Mr. Charles Lee
302-20 Misssisauga Valley, Missisauga,
L5A 3S1, Toronto, Canada
Ph. +1-276-477-5910
Email [email protected]

 

Categories
News

Private LTE & 5G network infrastructure market an $8 Billion opportunity

The latest research report indicates that annual investments in private LTE and 5G network infrastructure – which includes RAN (Radio Access Network), mobile core and transport network equipment – will reach $8 Billion by the end of 2023.

With the standardization of features such as MCX (Mission-Critical PTT, Video & Data) services and URLCC (Ultra-Reliable Low-Latency Communications) by the 3GPP, LTE and 5G NR (New Radio) networks are rapidly gaining recognition as an all-inclusive critical communications platform for the delivery of both mission and business critical applications.

By providing authority over wireless coverage and capacity, private LTE and 5G networks ensure guaranteed and secure connectivity, while supporting a wide range of applications – ranging from PTT group communications and real-time video delivery to wireless control and automation in industrial environments. Organizations across the critical communications and industrial IoT (Internet of Things) domains – including public safety agencies, militaries, utilities, oil & gas companies, mining groups, railway & port operators, manufacturers and industrial giants – are making sizeable investments in private LTE networks.

Ask for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350876?ref=Discount&toccode=SDMREL1350876

This 1,200-plus page report is the most comprehensive publication on the private LTE and 5G network market. In addition to detailed market size projections, it profiles more than 600 ecosystem players and covers over 40 case studies of private LTE and 5G networks, as well as analysis of hundreds of other private cellular networks.

The very first private 5G networks are also beginning to be deployed to serve a diverse array of usage scenarios spanning from connected factory robotics and massive-scale sensor networking to the control of AVGs (Automated Guided Vehicles) and AR/VR (Augmented & Virtual Reality). For example, Daimler’s Mercedes-Benz Cars division is establishing a local 5G network to support automobile production processes at its “Factory 56” in Sindelfingen, while the KMA (Korea Military Academy) is installing a dedicated 5G network in its northern Seoul campus to facilitate mixed reality-based military training programs – with a primary focus on shooting and tactical simulations.

In addition, with the emergence of neutral-host small cells, multi-operator connectivity and unlicensed/shared spectrum access schemes,  the use of private LTE and 5G networks in enterprise buildings, campuses and public venues is expected to grow significantly over the coming years. The practicality of spectrum sharing schemes such as the three-tiered CBRS (Citizens Broadband Radio Service) framework and Japan’s unlicensed sXGP (Shared Extended Global Platform) has already been proven with initial rollouts in locations such as corporate campuses, golf courses, race tracks, stadiums, airports and warehouses.

A number of independent neutral-host and wholesale operators are also stepping up with pioneering business models to provide LTE and 5G connectivity services to both mobile operators and enterprises, particularly in indoor settings and locations where it is technically or economically not feasible for traditional operators to deliver substantial wireless coverage and capacity.

Expected to reach $4.7 Billion in annual spending by the end of 2020, private LTE and 5G networks are increasingly becoming the preferred approach to deliver wireless connectivity for critical communications, industrial IoT, enterprise & campus environments, and public venues.  The market will further grow at a CAGR of 19% between 2020 and 2023, eventually accounting for nearly $8 Billion by the end of 2023.

According to our estimates that as much as 30% of these investments – approximately $2.5 Billion – will be directed towards the build-out of private 5G networks which will become preferred wireless connectivity medium to support the ongoing Industry 4.0 revolution for the automation and digitization of factories, warehouses, ports and other industrial premises, in addition to serving other verticals.

The “Private LTE & 5G Network Ecosystem: 2020 – 2030 – Opportunities, Challenges, Strategies, Industry Verticals & Forecasts” report presents an in-depth assessment of the private LTE and 5G network ecosystem including market drivers, challenges, enabling technologies, vertical market opportunities, applications, key trends, standardization, spectrum availability/allocation, regulatory landscape, deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents forecasts for private LTE and 5G network infrastructure investments from 2020 till 2030. The forecasts cover three submarkets, two air interface technologies, 10 vertical markets and six regions.

Request for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350876?ref=Sample-and-Brochure&toccode=SDMREL1350876

Table  of  Contents
1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  Private  LTE/5G  Networks
2.1 Private  Wireless  Networks
2.1.1 Addressing  the  Needs  of  the  Critical  Communications  Industry
2.1.2 The  Limitations  of  LMR  (Land  Mobile  Radio)  Networks
2.1.3 Growing  Use  of  Commercial  Mobile  Broadband  Technologies
2.1.4 Connectivity  Requirements  for  the  Industrial  IoT  (Internet  of  Things)
2.1.5 Localized  Mobile  Networks  for  Buildings,  Campuses  &  Public  Venues
2.2 LTE  &  5G  for  Private  Networking
2.2.1 Why  LTE  &  5G?
2.2.2 Performance  Metrics
2.2.3 Coexistence,  Interoperability  and  Spectrum  Flexibility
2.2.4 A  Thriving  Ecosystem  of  Chipsets,  Devices  &  Network  Equipment
2.2.5 Economic  Feasibility  of  Operation
2.2.6 Moving  Towards  LTE-Advanced  &  LTE-Advanced  Pro
2.2.7 Private  LTE  Support  in  LTE-Advanced  Pro
2.2.8 5G  NR  (New  Radio)  Capabilities  &  Usage  Scenarios
2.2.8.1 eMBB  (Enhanced  Mobile  Broadband)
2.2.8.2 URLCC  (Ultra-Reliable  Low-Latency  Communications)
2.2.8.3 mMTC  (Massive  Machine-Type  Communications)
2.3 Private  LTE  &  5G  Network  Operational  Models
2.3.1 Independent  Private  Network
2.3.2 Managed  Private  Network
2.3.3 Shared  Core  Private  Network
2.3.4 Hybrid  Commercial-Private  Network
2.3.5 Private  MVNO:  Commercial  Network  with  a  Private  Mobile  Core
2.3.6 Other  Approaches
2.4 Key  Applications  of  Private  LTE  &  5G  Networks
2.4.1 Secure  &  Seamless  Mobile  Broadband  Access
2.4.2 Bandwidth-Intensive  &  Latency-Sensitive  Field  Applications
2.4.3 Bulk  Multimedia  &  Data  Transfers
2.4.4 In-Building  Coverage  &  Capacity
2.4.5 Seamless  Roaming  &  Mobile  VPN  Access
2.4.6 Mission-Critical  HD  Voice  &  Group  Communications
2.4.7 Video  &  High-Resolution  Imagery
2.4.8 Massive-Scale  Video  Surveillance  &  Analytics
2.4.9 Messaging  &  Presence  Services
2.4.10 Location  Services  &  Mapping
2.4.11 Command  &  Control  Systems
2.4.12 Smart  Grid  Operations
2.4.13 Environmental  Monitoring
2.4.14 Industrial  Automation
2.4.15 Connected  Robotics
2.4.16 Machine  Vision
2.4.17 AR/VR  (Augmented  &  Virtual  Reality)
2.4.18 Telehealth  &  Remote  Surgery
2.4.19 High-Speed  Railway  Connectivity
2.4.20 PIS  (Passenger  Information  Systems)
2.4.21 Delay-Sensitive  Control  of  Railway  Infrastructure
2.4.22 In-Flight  Connectivity  for  Passengers  &  Airline  Operators
2.4.23 Maritime  Connectivity  for  Vessels  &  Offshore  Facilities
2.4.24 Telemetry,  Control  &  Remote  Diagnostics
2.4.25 Unmanned  Ground,  Marine  &  Aerial  Vehicles
2.5 Market  Drivers
2.5.1 Recognition  of  LTE  &  5G  as  the  De-Facto  Platform  for  Wireless  Connectivity
2.5.2 Spectral  Efficiency  &  Bandwidth  Flexibility
2.5.3 Regional  Interoperability  &  Cost  Efficiency
2.5.4 Endorsement  from  the  Critical  Communications  Industry
2.5.5 Emergence  of  Unlicensed  &  Shared  Spectrum  Technologies
2.5.6 Growing  Demand  for  High-Speed  &  Low-Latency  Data  Applications
2.5.7 Limited  Coverage  in  Indoor,  Industrial  &  Remote  Environments
2.5.8 Favorable  Licensing  Schemes  for  Localized  LTE  &  5G  Networks
2.5.9 Control  over  QoS  (Quality-of-Service)
2.5.10 Privacy  &  Security
2.6 Market  Barriers
2.6.1 Lack  of  Licensed  Spectrum  for  Wide-Area  Coverage
2.6.2 Funding  Challenges  for  Large-Scale  Networks
2.6.3 Technical  Complexities  of  Implementation  &  Operation
2.6.4 Smaller  Coverage  Footprint  Than  Legacy  LMR  Systems
2.6.5 Competition  from  IEEE  802.16s,  AeroMACS,  WiGRID  &  Other  Technologies
2.6.6 Delayed  Standardization

3 Chapter  3:  System  Architecture  &  Technologies  for  Private  LTE/5G  Networks
3.1 Architectural  Components  of  Private  LTE  &  5G  Networks
3.1.1 UE  (User  Equipment)
3.1.2 E-UTRAN  –  LTE  RAN  (Radio  Access  Network)
3.1.2.1 eNBs  –  LTE  Base  Stations
3.1.3 NG-RAN  –  5G  NR  (New  Radio)  Access  Network
3.1.3.1 gNBs  –  5G  NR  Base  Stations
3.1.3.2 en-gNBs  –  Secondary  Node  5G  NR  Base  Stations
3.1.3.3 ng-eNBs  –  Next  Generation  LTE  Base  Stations
3.1.4 Transport  Network
3.1.4.1 Backhaul
3.1.4.2 Fronthaul  &  Midhaul
3.1.5 EPC  (Evolved  Packet  Core)  –  The  LTE  Mobile  Core
3.1.5.1 SGW  (Serving  Gateway)
3.1.5.2 PGW  (Packet  Data  Network  Gateway)
3.1.5.3 MME  (Mobility  Management  Entity)
3.1.5.4 HSS  (Home  Subscriber  Server)
3.1.5.5 PCRF  (Policy  Charging  and  Rules  Function)
3.1.6 5GC  (5G  Core)/NGC  (Next-Generation  Core)
3.1.6.1 AMF  (Access  &  Mobility  Management  Function)
3.1.6.2 UPF  (User  Plane  Function)
3.1.6.3 SMF  (Session  Management  Function)
3.1.6.4 PCF  (Policy  Control  Function)
3.1.6.5 NEF  (Network  Exposure  Function)
3.1.6.6 NRF  (Network  Repository  Function)
3.1.6.7 UDM  (Unified  Data  Management)
3.1.6.8 UDR  (Unified  Data  Repository)
3.1.6.9 AUSF  (Authentication  Server  Function)
3.1.6.10 AF  (Application  Function)
3.1.6.11 NSSF  (Network  Slice  Selection  Function)
3.1.6.12 NWDAF  (Network  Data  Analytics  Function)
3.1.6.13 Other  Elements
3.1.7 IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
3.1.7.1 IMS  Core  &  VoLTE/VoNR
3.1.7.2 eMBMS/FeMBMS  –  Broadcasting/Multicasting  over  LTE/5G  Networks
3.1.7.3 ProSe  (Proximity  Services)
3.1.7.4 Group  Communication  &  Mission-Critical  Services
3.1.8 Gateways  for  LTE/5G-External  Network  Interworking
3.2 Key  Enabling  Technologies  &  Concepts
3.2.1 Critical  Communications
3.2.1.1 MCPTT  (Mission-Critical  PTT)  Voice  &  Group  Communications
3.2.1.2 Mission-Critical  Video  &  Data
3.2.1.3 ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.1.4 IOPS  (Isolated  E-UTRAN  Operation  for  Public  Safety)
3.2.1.5 Deployable  LTE  &  5G  Systems
3.2.1.6 UE  Enhancements
3.2.2 Industrial  IoT
3.2.2.1 eMTC,  NB-IoT  &  mMTC:  Wide  Area  &  High  Density  IoT  Applications
3.2.2.2 Techniques  for  URLLC
3.2.2.3 TSN  (Time  Sensitive  Networking)
3.2.3 QPP  (QoS,  Priority  &  Preemption)
3.2.4 High-Precision  Positioning
3.2.5 End-to-End  Security
3.2.6 Quantum  Cryptography  Technologies

3.2.7 Licensed  Spectrum  Sharing  &  Aggregation
3.2.8 Unlicensed  &  Shared  Spectrum  Usage
3.2.8.1 CBRS  (Citizens  Broadband  Radio  Service):  Three-Tiered  Sharing
3.2.8.2 LSA  (Licensed  Shared  Access):  Two-Tiered  Sharing
3.2.8.3 sXGP  (Shared  Extended  Global  Platform):  Non-Tiered  Unlicensed  Access
3.2.8.4 LTE-U/LAA  (License  Assisted  Access)  &  eLAA  (Enhanced  LAA):  Licensed  &  Unlicensed  Spectrum  Aggregation
3.2.8.5 MulteFire
3.2.8.6 5G  NR-U
3.2.9 SDR  (Software-Defined  Radio)
3.2.10 Cognitive  Radio  &  Spectrum  Sensing
3.2.11 Wireless  Connection  Bonding
3.2.12 Network  Sharing  &  Slicing
3.2.12.1 MOCN  (Multi-Operator  Core  Network)
3.2.12.2 DECOR  (Dedicated  Core)
3.2.12.3 Network  Slicing
3.2.13 Software-Centric  Networking
3.2.13.1 NFV  (Network  Functions  Virtualization)
3.2.13.2 SDN  (Software  Defined  Networking)
3.2.14 Small  Cells
3.2.15 C-RAN  (Centralized  RAN)
3.2.16 SON  (Self-Organizing  Networks)
3.2.17 MEC  (Multi-Access  Edge  Computing)
3.2.18 Artificial  Intelligence  &  Machine  Learning
3.2.19 Big  Data  &  Advanced  Analytics

to be continued @https://www.supplydemandmarketresearch.com/home/toc_publisher/1350876?code=SDMREL1350876

Contact US

SUPPLY DEMAND MARKET RESEARCH
Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
Ph:12764775910
[email protected]

Categories
News

Public Safety LTE/5G-Ready Network Infrastructure Market a USD 2 Billion Opportunity

The latest research report indicates that annual investments in public safety LTE/5G-ready infrastructure – for dedicated, hybrid commercial-private and secure MVNO networks – will reach $2 Billion by the end of 2020.

With the standardization of MCX (Mission-Critical PTT, Video & Data), IOPS (Isolated Operation for Public Safety), HPUE (High-Power User Equipment) and other critical communications features by the 3GPP, LTE and 5G NR (New Radio) networks are increasingly gaining recognition as an all-inclusive public safety communications platform for the delivery of real-time video, high-resolution imagery, multimedia messaging, mobile office/field data applications, location services and mapping, situational awareness, unmanned asset control and other broadband capabilities, as well as MCPTT (Mission-Critical PTT) voice and narrowband data services provided by traditional LMR (Land Mobile Radio) systems.

This 1,600-plus page report is the most comprehensive publication on the public safety LTE and 5G market. In addition to detailed market size projections, it profiles 1,100 ecosystem players and covers over 50 case studies of public safety LTE/5G implementations, as well as a database of over 500 global public safety LTE/5G engagements – as of Q2’2020

A myriad of dedicated, hybrid commercial-private and MVNO-based public safety LTE and 5G-ready networks are operational or in the process of being rolled out throughout the globe. In addition to the high-profile FirstNet, South Korea’s Safe-Net and Britain’s ESN nationwide public safety broadband projects, many additional national-level engagements have recently come to light – most notably, the Royal Thai Police’s LTE network which is already operational in the greater Bangkok region, Finland’s VIRVE 2.0 mission-critical mobile broadband service, France’s PCSTORM critical communications broadband project, and Russia’s secure 450 MHz LTE network for police forces, emergency services and the national guard.

Other operational and pilot deployments range from nationwide systems in the oil-rich GCC (Gulf Cooperation Council) region to local and city-level private LTE networks for first responders in markets as diverse as Canada, China, Laos, Indonesia, the Philippines, Pakistan, Lebanon, Egypt, Kenya, Ghana, Cote D’Ivoire, Cameroon, Mali, Madagascar, Mauritius, Canary Islands, Spain, Italy, Serbia, Argentina, Brazil, Colombia, Venezuela, Bolivia, Ecuador and Trinidad & Tobago, as well as multi-domain critical communications broadband networks such as Nordic Telecom in the Czech Republic and MRC’s (Mobile Radio Center) LTE-based advanced MCA digital radio system in Japan, and secure MVNO platforms in countries including but not limited to Mexico, Belgium, Switzerland, the Netherlands, Sweden, Slovenia and Estonia.

Request for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350875?ref=Sample-and-Brochure&toccode=SDMREL1350875

In addition, even though critical public safety-related 5G NR capabilities are yet to be standardized as part of the 3GPP’s Release 17 specifications, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology’s high-bandwidth and low-latency characteristics. For example, New Zealand Police are utilizing mobile operator Vodafone’s 5G NR network to share real-time UHD (Ultra High Definition) video feeds from cellular-equipped drones and police cruisers with officers on the ground and command posts. In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz) which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.

The annual investments in public safety LTE/5G-ready infrastructure will surpass $2 Billion by the end of 2020, predominantly driven by new build-outs and the expansion of existing dedicated and hybrid commercial-private networks in a variety of licensed bands across 420/450 MHz, 700 MHz, 800 MHz, 1.4 GHz and higher frequencies, in addition to secure MVNO networks for critical communications. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 10% between 2020 and 2023, eventually accounting for more than $3 Billion by the end of 2023.

The “Public Safety LTE & 5G Market: 2020 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the public safety LTE/5G market including market drivers, challenges, enabling technologies, application scenarios, use cases, operational models, key trends, standardization, spectrum availability/allocation, regulatory landscape, case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2020 till 2030, covering public safety LTE/5G infrastructure, terminal equipment, applications, systems integration and management solutions, as well as subscriptions and service revenue.

Ask for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350875?ref=Discount&toccode=SDMREL1350875

Table of Content

1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  the  Public  Safety  LTE  &  5G  Market
2.1 Narrowband  LMR  (Land  Mobile  Radio)  Systems  in  the  Public  Safety  Sector
2.1.1 LMR  Market  Size
2.1.1.1 Analog  LMR
2.1.1.2 DMR
2.1.1.3 dPMR,  NXDN  &  PDT
2.1.1.4 P25
2.1.1.5 TETRA
2.1.1.6 Tetrapol
2.1.1.7 Other  LMR  Technologies
2.1.2 The  Limitations  of  LMR  Networks
2.2 Adoption  of  Commercial  Mobile  Broadband  Technologies
2.2.1 Why  Use  Commercial  Technologies?
2.2.2 The  Role  of  Mobile  Broadband  in  Public  Safety  Communications
2.2.3 Can  Mobile  Broadband  Technologies  Replace  LMR  Systems?
2.3 Why  LTE  &  5G?
2.3.1 Performance  Metrics
2.3.2 Coexistence,  Interoperability  &  Spectrum  Flexibility
2.3.3 A  Thriving  Ecosystem  of  Chipsets,  Devices  &  Network  Equipment
2.3.4 Economic  Feasibility  of  Operation
2.3.5 Moving  Towards  LTE-Advanced  &  LTE-Advanced  Pro
2.3.6 Public  Safety  Communications  Support  in  LTE-Advanced  Pro
2.3.7 5G  NR  (New  Radio)  Capabilities  &  Usage  Scenarios
2.3.7.1 eMBB  (Enhanced  Mobile  Broadband)
2.3.7.2 URLCC  (Ultra-Reliable  Low-Latency  Communications)
2.3.7.3 mMTC  (Massive  Machine-Type  Communications)
2.3.8 5G  Applications  for  Public  Safety
2.4 Public  Safety  LTE  &  5G  Operational  Models
2.4.1 Public  Safety  Communications  Over  Commercial  LTE/5G  Networks
2.4.2 Independent  Private  LTE/5G  Network
2.4.3 Managed  Private  LTE/5G  Network
2.4.4 Shared  Core  Private  LTE/5G  Network
2.4.5 Hybrid  Commercial-Private  LTE/5G  Network
2.4.6 Secure  MVNO:  Commercial  LTE/5G  RAN  With  a  Private  Mobile  Core
2.4.7 Other  Approaches
2.5 Financing  &  Delivering  Dedicated  Public  Safety  LTE  &  5G  Networks
2.5.1 National  Government  Authority-Owned  &  Operated
2.5.2 Local  Government/Public  Safety  Agency-Owned  &  Operated
2.5.3 BOO  (Built,  Owned  &  Operated)  by  Critical  Communications  Service  Provider
2.5.4 Government-Funded  &  Commercial  Carrier-Operated
2.5.5 Other  Forms  of  PPPs  (Public-Private  Partnerships)
2.6 Market  Drivers
2.6.1 Growing  Demand  for  High-Speed  &  Low-Latency  Data  Applications
2.6.2 Recognition  of  LTE  &  5G  as  the  De-Facto  Platform  for  Wireless  Connectivity
2.6.3 Spectral  Efficiency  &  Bandwidth  Flexibility
2.6.4 National  &  Cross-Border  Interoperability
2.6.5 Consumer-Driven  Economies  of  Scale
2.6.6 Endorsement  From  the  Public  Safety  Community
2.6.7 Limited  Competition  From  Other  Wireless  Broadband  Technologies
2.6.8 Control  Over  QoS  (Quality-of-Service),  Prioritization  and  Preemption  Policies
2.6.9 Support  for  Mission-Critical  Functionality
2.6.10 Privacy  &  Security
2.7 Market  Barriers
2.7.1 Limited  Availability  of  Licensed  Spectrum  for  Public  Safety  Broadband
2.7.2 Financial  Challenges  Associated  With  Large-Scale  &  Nationwide  Networks
2.7.3 Technical  Complexities  of  Implementation  &  Operation
2.7.4 Smaller  Coverage  Footprint  Than  LMR  Systems
2.7.5 Delayed  Standardization  &  Commercialization  of  Mission-Critical  Functionality
2.7.6 Dependence  on  New  Chipsets  for  Direct-Mode  Communications

3 Chapter  3:  System  Architecture  &  Technologies  for  Public  Safety  LTE  &  5G  Networks
3.1 Architectural  Components  of  Public  Safety  LTE  &  5G  Networks
3.1.1 UE  (User  Equipment)
3.1.1.1 Smartphones  &  Handportable  Terminals
3.1.1.2 Mobile  &  Vehicular  Routers
3.1.1.3 Fixed  CPEs  (Customer  Premises  Equipment)
3.1.1.4 Tablets  &  Notebook  PCs
3.1.1.5 Smart  Wearables
3.1.1.6 Cellular  IoT  Modules
3.1.1.7 Add-On  Dongles
3.1.2 E-UTRAN  –  LTE  RAN  (Radio  Access  Network)
3.1.2.1 eNBs  –  LTE  Base  Stations
3.1.3 NG-RAN  –  5G  NR  (New  Radio)  Access  Network
3.1.3.1 gNBs  –  5G  NR  Base  Stations
3.1.3.2 en-gNBs  –  Secondary  Node  5G  NR  Base  Stations
3.1.3.3 ng-eNBs  –  Next  Generation  LTE  Base  Stations
3.1.4 Transport  Network
3.1.4.1 Backhaul
3.1.4.2 Fronthaul  &  Midhaul
3.1.5 EPC  (Evolved  Packet  Core)  –  LTE  Mobile  Core
3.1.5.1 SGW  (Serving  Gateway)
3.1.5.2 PGW  (Packet  Data  Network  Gateway)
3.1.5.3 MME  (Mobility  Management  Entity)
3.1.5.4 HSS  (Home  Subscriber  Server)
3.1.5.5 PCRF  (Policy  Charging  and  Rules  Function)
3.1.6 5GC  (5G  Core)/NGC  (Next-Generation  Core)
3.1.6.1 AMF  (Access  &  Mobility  Management  Function)
3.1.6.2 UPF  (User  Plane  Function)
3.1.6.3 SMF  (Session  Management  Function)
3.1.6.4 PCF  (Policy  Control  Function)
3.1.6.5 NEF  (Network  Exposure  Function)
3.1.6.6 NRF  (Network  Repository  Function)
3.1.6.7 UDM  (Unified  Data  Management)
3.1.6.8 UDR  (Unified  Data  Repository)
3.1.6.9 AUSF  (Authentication  Server  Function)
3.1.6.10 AF  (Application  Function)
3.1.6.11 NSSF  (Network  Slice  Selection  Function)
3.1.6.12 NWDAF  (Network  Data  Analytics  Function)
3.1.6.13 Other  Elements
3.1.7 IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
3.1.7.1 IMS  Core  &  VoLTE/VoNR
3.1.7.2 eMBMS/FeMBMS  –  Broadcasting/Multicasting  Over  LTE/5G  Networks
3.1.7.3 ProSe  (Proximity  Services)
3.1.7.4 Group  Communication  &  Mission-Critical  Services
3.1.8 Gateways  for  LTE/5G-External  Network  Interworking
3.2 Key  Enabling  Technologies  &  Concepts
3.2.1 MCPTT  (Mission-Critical  PTT)  Voice  &  Group  Communications
3.2.1.1 Functional  Capabilities  of  the  MCPTT  Service
3.2.1.2 Performance  Comparison  With  LMR  Voice  Services
3.2.2 Mission-Critical  Video  &  Data
3.2.2.1 MCVideo  (Mission-Critical  Video)
3.2.2.2 MCData  (Mission-Critical  Data)
3.2.3 ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.3.1 Direct  Communication  for  Coverage  Extension
3.2.3.2 Direct  Communication  Within  Network  Coverage
3.2.3.3 Infrastructure  Failure  &  Emergency  Scenarios
3.2.3.4 Additional  Capacity  for  Incident  Response  &  Special  Events
3.2.3.5 Discovery  Services  for  Disaster  Relief
3.2.4 IOPS  (Isolated  Operation  for  Public  Safety)
3.2.4.1 Ensuring  Resilience  &  Service  Continuity  for  Critical  Communications
3.2.4.2 Localized  Mobile  Core  &  Application  Capabilities
3.2.4.3 Support  for  Regular  &  Nomadic  Base  Stations
3.2.4.4 Isolated  RAN  Scenarios
3.2.4.4.1 No  Backhaul
3.2.4.4.2 Limited  Backhaul  for  Signaling  Only
3.2.4.4.3 Limited  Backhaul  for  Signaling  &  User  Data
3.2.5 Deployable  LTE  &  5G  Systems
3.2.5.1 Key  Operational  Capabilities
3.2.5.1.1 RAN-Only  Systems  for  Coverage  &  Capacity  Enhancement
3.2.5.1.2 Mobile  Core-Integrated  Systems  for  Autonomous  Operation
3.2.5.1.3 Backhaul  Interfaces  &  Connectivity
3.2.5.2 NIB  (Network-in-a-Box):  Self-Contained  Portable  Systems
3.2.5.2.1 Backpacks
3.2.5.2.2 Tactical  Cases
3.2.5.3 Vehicular-Based  Deployables
3.2.5.3.1 COW  (Cell-on-Wheels)
3.2.5.3.2 COLT  (Cell-on-Light  Truck)
3.2.5.3.3 SOW  (System-on-Wheels)
3.2.5.3.4 VNS  (Vehicular  Network  System)
3.2.5.4 Aerial  Cell  Sites
3.2.5.4.1 Drones
3.2.5.4.2 Balloons
3.2.5.4.3 Other  Aircraft
3.2.5.5 Maritime  Platforms
3.2.6 UE  Enhancements
3.2.6.1 Ruggedization  to  Meet  Critical  Communications  User  Requirements
3.2.6.2 Dedicated  PTT  Buttons  &  Functional  Enhancements
3.2.6.3 Long-Lasting  Batteries
3.2.6.4 HPUE  (High-Power  User  Equipment)
3.2.7 IoT-Focused  Technologies
3.2.7.1 eMTC,  NB-IoT  &  mMTC:  Wide  Area  &  High  Density  IoT  Applications
3.2.7.2 Techniques  for  URLLC
3.2.7.3 TSN  (Time  Sensitive  Networking)
3.2.8 High-Precision  Positioning
3.2.8.1 Support  for  Assisted-GNSS  &  RTK  (Real  Time  Kinematic)  Technology
3.2.8.2 RAN-Based  Positioning  Techniques
3.2.8.3 RAN-Independent  Methods
3.2.9 QPP  (QoS,  Priority  &  Preemption)
3.2.9.1 3GPP-Specified  QPP  Capabilities
3.2.9.1.1 Access  Priority:  ACB  (Access  Class  Barring)
3.2.9.1.2 Admission  Priority  &  Preemption:  ARP  (Allocation  and  Retention  Priority)
3.2.9.1.3 Traffic  Scheduling  Priority:  QCI  (QoS  Class  Indicator)
3.2.9.1.4 Emergency  Scenarios:  eMPS  (Enhanced  Multimedia  Priority  Service)
3.2.9.2 Additional  QPP  Enhancements
3.2.10 E2E  (End-to-End)  Security
3.2.10.1 3GPP-Specified  Security  Architecture
3.2.10.1.1 Device  Security
3.2.10.1.2 Air  Interface  Security
3.2.10.1.3 Mobile  Core  &  Transport  Network  Security
3.2.10.2 Application  Domain  Protection  &  E2E  Encryption
3.2.10.3 Enhancements  to  Support  National  Security  &  Additional  Requirements
3.2.10.4 Quantum  Cryptography  Technologies
3.2.11 Licensed  Spectrum  Sharing  &  Aggregation
3.2.12 Unlicensed  &  Shared  Spectrum  Usage
3.2.12.1 CBRS  (Citizens  Broadband  Radio  Service):  Three-Tiered  Sharing
3.2.12.2 LSA  (Licensed  Shared  Access):  Two-Tiered  Sharing
3.2.12.3 sXGP  (Shared  Extended  Global  Platform):  Non-Tiered  Unlicensed  Access
3.2.12.4 LTE-U/LAA  (License  Assisted  Access)  &  eLAA  (Enhanced  LAA):  Licensed  &  Unlicensed  Spectrum  Aggregation
3.2.12.5 MulteFire
3.2.12.6 5G  NR-U
3.2.13 SDR  (Software-Defined  Radio)
3.2.14 Cognitive  Radio  &  Spectrum  Sensing
3.2.15 Wireless  Connection  Bonding
3.2.16 Network  Sharing  &  Slicing
3.2.16.1 MOCN  (Multi-Operator  Core  Network)
3.2.16.2 MORAN  (Multi-Operator  RAN)
3.2.16.3 GWCN  (Gateway  Core  Network)
3.2.16.4 Service-Specific  PLMN  (Public  Land  Mobile  Network)  IDs
3.2.16.5 DDN  (Data  Network  Name)/APN  (Access  Points  Name)-Based  Isolation
3.2.16.6 DECOR  (Dedicated  Core)
3.2.16.7 eDECOR  (Enhanced  DECOR)
3.2.16.8 5G  Network  Slicing
3.2.17 Software-Centric  Networking
3.2.17.1 NFV  (Network  Functions  Virtualization)
3.2.17.2 SDN  (Software  Defined  Networking)
3.2.18 Small  Cells
3.2.19 C-RAN  (Centralized  RAN)
3.2.20 Satellite  Communications
3.2.21 High  Capacity  Microwave/Millimeter  Wave  Links
3.2.22 Wireline  Fiber  Infrastructure
3.2.23 SON  (Self-Organizing  Networks)
3.2.24 MEC  (Multi-Access  Edge  Computing)
3.2.25 Artificial  Intelligence  &  Machine  Learning
3.2.26 Big  Data  &  Advanced  Analytics to be continued @https://www.supplydemandmarketresearch.com/home/toc_publisher/1350875?code=SDMREL1350875

Contact US

SUPPLY DEMAND MARKET RESEARCH
Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
Ph:12764775910
[email protected]

Categories
Analysis Forecast Market Reports News

Ornamental Fish Feed Market Breaking new Grounds and touch new Level in Upcoming Year by The Hartz Mountain Corporation, Tetra, Hai Feng Feeds Co., Ltd., Central Garden & Pet Company

Ornamental Fish Feed Market report focused on the comprehensive analysis of current and future prospects of the Ornamental Fish Feed industry. This report is a consolidation of primary and secondary research, which provides market size, share, dynamics, and forecast for various segments and sub-segments considering the macro and micro environmental factors. An in-depth analysis of past trends, future trends, demographics, technological advancements, and regulatory requirements for the Ornamental Fish Feed market has been done in order to calculate the growth rates for each segment and sub-segments.

Get Sample Copy (Including FULL TOC, Graphs and Tables) of this Report:

https://www.a2zmarketresearch.com/sample?reportId=282944

Note – In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Top Key Vendors of this Market are:

The Hartz Mountain Corporation, Tetra, Hai Feng Feeds Co., Ltd., Central Garden & Pet Company, Cargill, PT Central Proteina Prima Tbk, GLOPEX, Ocean Star International, Inc., Growel Formulations Pvt. Ltd, Northfin Inc., OmegaSea, LLC, Zeigler Feeds, Taiyo Group, Ocean Nutrition, Vitalis Aquatic Nutrition, Hikari Sales USA, Inc., Alltech

Various factors are responsible for the market’s growth trajectory, which are studied at length in the report. In addition, the report lists down the restraints that are posing threat to the global Ornamental Fish Feed market. It also gauges the bargaining power of suppliers and buyers, threat from new entrants and product substitute, and the degree of competition prevailing in the market. The influence of the latest government guidelines is also analyzed in detail in the report. It studies the Ornamental Fish Feed market’s trajectory between forecast periods.

The report provides insights on the following pointers:

Market Penetration: Comprehensive information on the product portfolios of the top players in the Ornamental Fish Feed market.

Product Development/Innovation: Detailed insights on the upcoming technologies, R&D activities, and product launches in the market.

Competitive Assessment: In-depth assessment of the market strategies, geographic and business segments of the leading players in the market.

Market Development: Comprehensive information about emerging markets. This report analyzes the market for various segments across geographies.

Market Diversification: Exhaustive information about new products, untapped geographies, recent developments, and investments in the Ornamental Fish Feed market.

For Direct Purchase, Visit @:

https://www.a2zmarketresearch.com/buy?reportId=282944

The report summarized the high revenue that has been generated across locations like, North America, Japan, Europe, Asia, and India along with the facts and figures of Ornamental Fish Feed market. It focuses on the major points, which are necessary to make positive impacts on the market policies, international transactions, speculation, and supply demand in the global market.

Global Ornamental Fish Feed Market Segmentation:

Market Segmentation by Type:

Meat Ingredient
Plant Ingredient
Others

Market Segmentation by Application:

Aquarium
Personal
Ornamental Fish Farms
Others

Table of Contents

Global Ornamental Fish Feed Market Research Report 2020 – 2026

Chapter 1 Ornamental Fish Feed Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Ornamental Fish Feed Market Forecast

For more Information, Inquire @:

https://www.a2zmarketresearch.com/enquiry?reportId=282944

If you have any special requirements, please let us know and we will offer you the report as you want.   


About A2Z Market Research:

The A2Z Market Research library provides syndication reports from market researchers around the world. Ready-to-buy syndication Market research studies will help you find the most relevant business intelligence.

Our Research Analyst Provides business insights and market research reports for large and small businesses.

The company helps clients build business policies and grow in that market area. A2Z Market Research is not only interested in industry reports dealing with telecommunications, healthcare, pharmaceuticals, financial services, energy, technology, real estate, logistics, F & B, media, etc. but also your company data, country profiles, trends, information and analysis on the sector of your interest.


Contact Us:

Roger Smith

1887 WHITNEY MESA DR HENDERSON, NV 89014

[email protected]

+1 775 237 4147