Categories
News

Private LTE & 5G network infrastructure market an $8 Billion opportunity

The latest research report indicates that annual investments in private LTE and 5G network infrastructure – which includes RAN (Radio Access Network), mobile core and transport network equipment – will reach $8 Billion by the end of 2023.

With the standardization of features such as MCX (Mission-Critical PTT, Video & Data) services and URLCC (Ultra-Reliable Low-Latency Communications) by the 3GPP, LTE and 5G NR (New Radio) networks are rapidly gaining recognition as an all-inclusive critical communications platform for the delivery of both mission and business critical applications.

By providing authority over wireless coverage and capacity, private LTE and 5G networks ensure guaranteed and secure connectivity, while supporting a wide range of applications – ranging from PTT group communications and real-time video delivery to wireless control and automation in industrial environments. Organizations across the critical communications and industrial IoT (Internet of Things) domains – including public safety agencies, militaries, utilities, oil & gas companies, mining groups, railway & port operators, manufacturers and industrial giants – are making sizeable investments in private LTE networks.

Ask for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350876?ref=Discount&toccode=SDMREL1350876

This 1,200-plus page report is the most comprehensive publication on the private LTE and 5G network market. In addition to detailed market size projections, it profiles more than 600 ecosystem players and covers over 40 case studies of private LTE and 5G networks, as well as analysis of hundreds of other private cellular networks.

The very first private 5G networks are also beginning to be deployed to serve a diverse array of usage scenarios spanning from connected factory robotics and massive-scale sensor networking to the control of AVGs (Automated Guided Vehicles) and AR/VR (Augmented & Virtual Reality). For example, Daimler’s Mercedes-Benz Cars division is establishing a local 5G network to support automobile production processes at its “Factory 56” in Sindelfingen, while the KMA (Korea Military Academy) is installing a dedicated 5G network in its northern Seoul campus to facilitate mixed reality-based military training programs – with a primary focus on shooting and tactical simulations.

In addition, with the emergence of neutral-host small cells, multi-operator connectivity and unlicensed/shared spectrum access schemes,  the use of private LTE and 5G networks in enterprise buildings, campuses and public venues is expected to grow significantly over the coming years. The practicality of spectrum sharing schemes such as the three-tiered CBRS (Citizens Broadband Radio Service) framework and Japan’s unlicensed sXGP (Shared Extended Global Platform) has already been proven with initial rollouts in locations such as corporate campuses, golf courses, race tracks, stadiums, airports and warehouses.

A number of independent neutral-host and wholesale operators are also stepping up with pioneering business models to provide LTE and 5G connectivity services to both mobile operators and enterprises, particularly in indoor settings and locations where it is technically or economically not feasible for traditional operators to deliver substantial wireless coverage and capacity.

Expected to reach $4.7 Billion in annual spending by the end of 2020, private LTE and 5G networks are increasingly becoming the preferred approach to deliver wireless connectivity for critical communications, industrial IoT, enterprise & campus environments, and public venues.  The market will further grow at a CAGR of 19% between 2020 and 2023, eventually accounting for nearly $8 Billion by the end of 2023.

According to our estimates that as much as 30% of these investments – approximately $2.5 Billion – will be directed towards the build-out of private 5G networks which will become preferred wireless connectivity medium to support the ongoing Industry 4.0 revolution for the automation and digitization of factories, warehouses, ports and other industrial premises, in addition to serving other verticals.

The “Private LTE & 5G Network Ecosystem: 2020 – 2030 – Opportunities, Challenges, Strategies, Industry Verticals & Forecasts” report presents an in-depth assessment of the private LTE and 5G network ecosystem including market drivers, challenges, enabling technologies, vertical market opportunities, applications, key trends, standardization, spectrum availability/allocation, regulatory landscape, deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents forecasts for private LTE and 5G network infrastructure investments from 2020 till 2030. The forecasts cover three submarkets, two air interface technologies, 10 vertical markets and six regions.

Request for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350876?ref=Sample-and-Brochure&toccode=SDMREL1350876

Table  of  Contents
1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  Private  LTE/5G  Networks
2.1 Private  Wireless  Networks
2.1.1 Addressing  the  Needs  of  the  Critical  Communications  Industry
2.1.2 The  Limitations  of  LMR  (Land  Mobile  Radio)  Networks
2.1.3 Growing  Use  of  Commercial  Mobile  Broadband  Technologies
2.1.4 Connectivity  Requirements  for  the  Industrial  IoT  (Internet  of  Things)
2.1.5 Localized  Mobile  Networks  for  Buildings,  Campuses  &  Public  Venues
2.2 LTE  &  5G  for  Private  Networking
2.2.1 Why  LTE  &  5G?
2.2.2 Performance  Metrics
2.2.3 Coexistence,  Interoperability  and  Spectrum  Flexibility
2.2.4 A  Thriving  Ecosystem  of  Chipsets,  Devices  &  Network  Equipment
2.2.5 Economic  Feasibility  of  Operation
2.2.6 Moving  Towards  LTE-Advanced  &  LTE-Advanced  Pro
2.2.7 Private  LTE  Support  in  LTE-Advanced  Pro
2.2.8 5G  NR  (New  Radio)  Capabilities  &  Usage  Scenarios
2.2.8.1 eMBB  (Enhanced  Mobile  Broadband)
2.2.8.2 URLCC  (Ultra-Reliable  Low-Latency  Communications)
2.2.8.3 mMTC  (Massive  Machine-Type  Communications)
2.3 Private  LTE  &  5G  Network  Operational  Models
2.3.1 Independent  Private  Network
2.3.2 Managed  Private  Network
2.3.3 Shared  Core  Private  Network
2.3.4 Hybrid  Commercial-Private  Network
2.3.5 Private  MVNO:  Commercial  Network  with  a  Private  Mobile  Core
2.3.6 Other  Approaches
2.4 Key  Applications  of  Private  LTE  &  5G  Networks
2.4.1 Secure  &  Seamless  Mobile  Broadband  Access
2.4.2 Bandwidth-Intensive  &  Latency-Sensitive  Field  Applications
2.4.3 Bulk  Multimedia  &  Data  Transfers
2.4.4 In-Building  Coverage  &  Capacity
2.4.5 Seamless  Roaming  &  Mobile  VPN  Access
2.4.6 Mission-Critical  HD  Voice  &  Group  Communications
2.4.7 Video  &  High-Resolution  Imagery
2.4.8 Massive-Scale  Video  Surveillance  &  Analytics
2.4.9 Messaging  &  Presence  Services
2.4.10 Location  Services  &  Mapping
2.4.11 Command  &  Control  Systems
2.4.12 Smart  Grid  Operations
2.4.13 Environmental  Monitoring
2.4.14 Industrial  Automation
2.4.15 Connected  Robotics
2.4.16 Machine  Vision
2.4.17 AR/VR  (Augmented  &  Virtual  Reality)
2.4.18 Telehealth  &  Remote  Surgery
2.4.19 High-Speed  Railway  Connectivity
2.4.20 PIS  (Passenger  Information  Systems)
2.4.21 Delay-Sensitive  Control  of  Railway  Infrastructure
2.4.22 In-Flight  Connectivity  for  Passengers  &  Airline  Operators
2.4.23 Maritime  Connectivity  for  Vessels  &  Offshore  Facilities
2.4.24 Telemetry,  Control  &  Remote  Diagnostics
2.4.25 Unmanned  Ground,  Marine  &  Aerial  Vehicles
2.5 Market  Drivers
2.5.1 Recognition  of  LTE  &  5G  as  the  De-Facto  Platform  for  Wireless  Connectivity
2.5.2 Spectral  Efficiency  &  Bandwidth  Flexibility
2.5.3 Regional  Interoperability  &  Cost  Efficiency
2.5.4 Endorsement  from  the  Critical  Communications  Industry
2.5.5 Emergence  of  Unlicensed  &  Shared  Spectrum  Technologies
2.5.6 Growing  Demand  for  High-Speed  &  Low-Latency  Data  Applications
2.5.7 Limited  Coverage  in  Indoor,  Industrial  &  Remote  Environments
2.5.8 Favorable  Licensing  Schemes  for  Localized  LTE  &  5G  Networks
2.5.9 Control  over  QoS  (Quality-of-Service)
2.5.10 Privacy  &  Security
2.6 Market  Barriers
2.6.1 Lack  of  Licensed  Spectrum  for  Wide-Area  Coverage
2.6.2 Funding  Challenges  for  Large-Scale  Networks
2.6.3 Technical  Complexities  of  Implementation  &  Operation
2.6.4 Smaller  Coverage  Footprint  Than  Legacy  LMR  Systems
2.6.5 Competition  from  IEEE  802.16s,  AeroMACS,  WiGRID  &  Other  Technologies
2.6.6 Delayed  Standardization

3 Chapter  3:  System  Architecture  &  Technologies  for  Private  LTE/5G  Networks
3.1 Architectural  Components  of  Private  LTE  &  5G  Networks
3.1.1 UE  (User  Equipment)
3.1.2 E-UTRAN  –  LTE  RAN  (Radio  Access  Network)
3.1.2.1 eNBs  –  LTE  Base  Stations
3.1.3 NG-RAN  –  5G  NR  (New  Radio)  Access  Network
3.1.3.1 gNBs  –  5G  NR  Base  Stations
3.1.3.2 en-gNBs  –  Secondary  Node  5G  NR  Base  Stations
3.1.3.3 ng-eNBs  –  Next  Generation  LTE  Base  Stations
3.1.4 Transport  Network
3.1.4.1 Backhaul
3.1.4.2 Fronthaul  &  Midhaul
3.1.5 EPC  (Evolved  Packet  Core)  –  The  LTE  Mobile  Core
3.1.5.1 SGW  (Serving  Gateway)
3.1.5.2 PGW  (Packet  Data  Network  Gateway)
3.1.5.3 MME  (Mobility  Management  Entity)
3.1.5.4 HSS  (Home  Subscriber  Server)
3.1.5.5 PCRF  (Policy  Charging  and  Rules  Function)
3.1.6 5GC  (5G  Core)/NGC  (Next-Generation  Core)
3.1.6.1 AMF  (Access  &  Mobility  Management  Function)
3.1.6.2 UPF  (User  Plane  Function)
3.1.6.3 SMF  (Session  Management  Function)
3.1.6.4 PCF  (Policy  Control  Function)
3.1.6.5 NEF  (Network  Exposure  Function)
3.1.6.6 NRF  (Network  Repository  Function)
3.1.6.7 UDM  (Unified  Data  Management)
3.1.6.8 UDR  (Unified  Data  Repository)
3.1.6.9 AUSF  (Authentication  Server  Function)
3.1.6.10 AF  (Application  Function)
3.1.6.11 NSSF  (Network  Slice  Selection  Function)
3.1.6.12 NWDAF  (Network  Data  Analytics  Function)
3.1.6.13 Other  Elements
3.1.7 IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
3.1.7.1 IMS  Core  &  VoLTE/VoNR
3.1.7.2 eMBMS/FeMBMS  –  Broadcasting/Multicasting  over  LTE/5G  Networks
3.1.7.3 ProSe  (Proximity  Services)
3.1.7.4 Group  Communication  &  Mission-Critical  Services
3.1.8 Gateways  for  LTE/5G-External  Network  Interworking
3.2 Key  Enabling  Technologies  &  Concepts
3.2.1 Critical  Communications
3.2.1.1 MCPTT  (Mission-Critical  PTT)  Voice  &  Group  Communications
3.2.1.2 Mission-Critical  Video  &  Data
3.2.1.3 ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.1.4 IOPS  (Isolated  E-UTRAN  Operation  for  Public  Safety)
3.2.1.5 Deployable  LTE  &  5G  Systems
3.2.1.6 UE  Enhancements
3.2.2 Industrial  IoT
3.2.2.1 eMTC,  NB-IoT  &  mMTC:  Wide  Area  &  High  Density  IoT  Applications
3.2.2.2 Techniques  for  URLLC
3.2.2.3 TSN  (Time  Sensitive  Networking)
3.2.3 QPP  (QoS,  Priority  &  Preemption)
3.2.4 High-Precision  Positioning
3.2.5 End-to-End  Security
3.2.6 Quantum  Cryptography  Technologies

3.2.7 Licensed  Spectrum  Sharing  &  Aggregation
3.2.8 Unlicensed  &  Shared  Spectrum  Usage
3.2.8.1 CBRS  (Citizens  Broadband  Radio  Service):  Three-Tiered  Sharing
3.2.8.2 LSA  (Licensed  Shared  Access):  Two-Tiered  Sharing
3.2.8.3 sXGP  (Shared  Extended  Global  Platform):  Non-Tiered  Unlicensed  Access
3.2.8.4 LTE-U/LAA  (License  Assisted  Access)  &  eLAA  (Enhanced  LAA):  Licensed  &  Unlicensed  Spectrum  Aggregation
3.2.8.5 MulteFire
3.2.8.6 5G  NR-U
3.2.9 SDR  (Software-Defined  Radio)
3.2.10 Cognitive  Radio  &  Spectrum  Sensing
3.2.11 Wireless  Connection  Bonding
3.2.12 Network  Sharing  &  Slicing
3.2.12.1 MOCN  (Multi-Operator  Core  Network)
3.2.12.2 DECOR  (Dedicated  Core)
3.2.12.3 Network  Slicing
3.2.13 Software-Centric  Networking
3.2.13.1 NFV  (Network  Functions  Virtualization)
3.2.13.2 SDN  (Software  Defined  Networking)
3.2.14 Small  Cells
3.2.15 C-RAN  (Centralized  RAN)
3.2.16 SON  (Self-Organizing  Networks)
3.2.17 MEC  (Multi-Access  Edge  Computing)
3.2.18 Artificial  Intelligence  &  Machine  Learning
3.2.19 Big  Data  &  Advanced  Analytics

to be continued @https://www.supplydemandmarketresearch.com/home/toc_publisher/1350876?code=SDMREL1350876

Contact US

SUPPLY DEMAND MARKET RESEARCH
Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
Ph:12764775910
[email protected]

Categories
News

Public Safety LTE/5G-Ready Network Infrastructure Market a USD 2 Billion Opportunity

The latest research report indicates that annual investments in public safety LTE/5G-ready infrastructure – for dedicated, hybrid commercial-private and secure MVNO networks – will reach $2 Billion by the end of 2020.

With the standardization of MCX (Mission-Critical PTT, Video & Data), IOPS (Isolated Operation for Public Safety), HPUE (High-Power User Equipment) and other critical communications features by the 3GPP, LTE and 5G NR (New Radio) networks are increasingly gaining recognition as an all-inclusive public safety communications platform for the delivery of real-time video, high-resolution imagery, multimedia messaging, mobile office/field data applications, location services and mapping, situational awareness, unmanned asset control and other broadband capabilities, as well as MCPTT (Mission-Critical PTT) voice and narrowband data services provided by traditional LMR (Land Mobile Radio) systems.

This 1,600-plus page report is the most comprehensive publication on the public safety LTE and 5G market. In addition to detailed market size projections, it profiles 1,100 ecosystem players and covers over 50 case studies of public safety LTE/5G implementations, as well as a database of over 500 global public safety LTE/5G engagements – as of Q2’2020

A myriad of dedicated, hybrid commercial-private and MVNO-based public safety LTE and 5G-ready networks are operational or in the process of being rolled out throughout the globe. In addition to the high-profile FirstNet, South Korea’s Safe-Net and Britain’s ESN nationwide public safety broadband projects, many additional national-level engagements have recently come to light – most notably, the Royal Thai Police’s LTE network which is already operational in the greater Bangkok region, Finland’s VIRVE 2.0 mission-critical mobile broadband service, France’s PCSTORM critical communications broadband project, and Russia’s secure 450 MHz LTE network for police forces, emergency services and the national guard.

Other operational and pilot deployments range from nationwide systems in the oil-rich GCC (Gulf Cooperation Council) region to local and city-level private LTE networks for first responders in markets as diverse as Canada, China, Laos, Indonesia, the Philippines, Pakistan, Lebanon, Egypt, Kenya, Ghana, Cote D’Ivoire, Cameroon, Mali, Madagascar, Mauritius, Canary Islands, Spain, Italy, Serbia, Argentina, Brazil, Colombia, Venezuela, Bolivia, Ecuador and Trinidad & Tobago, as well as multi-domain critical communications broadband networks such as Nordic Telecom in the Czech Republic and MRC’s (Mobile Radio Center) LTE-based advanced MCA digital radio system in Japan, and secure MVNO platforms in countries including but not limited to Mexico, Belgium, Switzerland, the Netherlands, Sweden, Slovenia and Estonia.

Request for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350875?ref=Sample-and-Brochure&toccode=SDMREL1350875

In addition, even though critical public safety-related 5G NR capabilities are yet to be standardized as part of the 3GPP’s Release 17 specifications, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology’s high-bandwidth and low-latency characteristics. For example, New Zealand Police are utilizing mobile operator Vodafone’s 5G NR network to share real-time UHD (Ultra High Definition) video feeds from cellular-equipped drones and police cruisers with officers on the ground and command posts. In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz) which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.

The annual investments in public safety LTE/5G-ready infrastructure will surpass $2 Billion by the end of 2020, predominantly driven by new build-outs and the expansion of existing dedicated and hybrid commercial-private networks in a variety of licensed bands across 420/450 MHz, 700 MHz, 800 MHz, 1.4 GHz and higher frequencies, in addition to secure MVNO networks for critical communications. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 10% between 2020 and 2023, eventually accounting for more than $3 Billion by the end of 2023.

The “Public Safety LTE & 5G Market: 2020 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the public safety LTE/5G market including market drivers, challenges, enabling technologies, application scenarios, use cases, operational models, key trends, standardization, spectrum availability/allocation, regulatory landscape, case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2020 till 2030, covering public safety LTE/5G infrastructure, terminal equipment, applications, systems integration and management solutions, as well as subscriptions and service revenue.

Ask for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350875?ref=Discount&toccode=SDMREL1350875

Table of Content

1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  the  Public  Safety  LTE  &  5G  Market
2.1 Narrowband  LMR  (Land  Mobile  Radio)  Systems  in  the  Public  Safety  Sector
2.1.1 LMR  Market  Size
2.1.1.1 Analog  LMR
2.1.1.2 DMR
2.1.1.3 dPMR,  NXDN  &  PDT
2.1.1.4 P25
2.1.1.5 TETRA
2.1.1.6 Tetrapol
2.1.1.7 Other  LMR  Technologies
2.1.2 The  Limitations  of  LMR  Networks
2.2 Adoption  of  Commercial  Mobile  Broadband  Technologies
2.2.1 Why  Use  Commercial  Technologies?
2.2.2 The  Role  of  Mobile  Broadband  in  Public  Safety  Communications
2.2.3 Can  Mobile  Broadband  Technologies  Replace  LMR  Systems?
2.3 Why  LTE  &  5G?
2.3.1 Performance  Metrics
2.3.2 Coexistence,  Interoperability  &  Spectrum  Flexibility
2.3.3 A  Thriving  Ecosystem  of  Chipsets,  Devices  &  Network  Equipment
2.3.4 Economic  Feasibility  of  Operation
2.3.5 Moving  Towards  LTE-Advanced  &  LTE-Advanced  Pro
2.3.6 Public  Safety  Communications  Support  in  LTE-Advanced  Pro
2.3.7 5G  NR  (New  Radio)  Capabilities  &  Usage  Scenarios
2.3.7.1 eMBB  (Enhanced  Mobile  Broadband)
2.3.7.2 URLCC  (Ultra-Reliable  Low-Latency  Communications)
2.3.7.3 mMTC  (Massive  Machine-Type  Communications)
2.3.8 5G  Applications  for  Public  Safety
2.4 Public  Safety  LTE  &  5G  Operational  Models
2.4.1 Public  Safety  Communications  Over  Commercial  LTE/5G  Networks
2.4.2 Independent  Private  LTE/5G  Network
2.4.3 Managed  Private  LTE/5G  Network
2.4.4 Shared  Core  Private  LTE/5G  Network
2.4.5 Hybrid  Commercial-Private  LTE/5G  Network
2.4.6 Secure  MVNO:  Commercial  LTE/5G  RAN  With  a  Private  Mobile  Core
2.4.7 Other  Approaches
2.5 Financing  &  Delivering  Dedicated  Public  Safety  LTE  &  5G  Networks
2.5.1 National  Government  Authority-Owned  &  Operated
2.5.2 Local  Government/Public  Safety  Agency-Owned  &  Operated
2.5.3 BOO  (Built,  Owned  &  Operated)  by  Critical  Communications  Service  Provider
2.5.4 Government-Funded  &  Commercial  Carrier-Operated
2.5.5 Other  Forms  of  PPPs  (Public-Private  Partnerships)
2.6 Market  Drivers
2.6.1 Growing  Demand  for  High-Speed  &  Low-Latency  Data  Applications
2.6.2 Recognition  of  LTE  &  5G  as  the  De-Facto  Platform  for  Wireless  Connectivity
2.6.3 Spectral  Efficiency  &  Bandwidth  Flexibility
2.6.4 National  &  Cross-Border  Interoperability
2.6.5 Consumer-Driven  Economies  of  Scale
2.6.6 Endorsement  From  the  Public  Safety  Community
2.6.7 Limited  Competition  From  Other  Wireless  Broadband  Technologies
2.6.8 Control  Over  QoS  (Quality-of-Service),  Prioritization  and  Preemption  Policies
2.6.9 Support  for  Mission-Critical  Functionality
2.6.10 Privacy  &  Security
2.7 Market  Barriers
2.7.1 Limited  Availability  of  Licensed  Spectrum  for  Public  Safety  Broadband
2.7.2 Financial  Challenges  Associated  With  Large-Scale  &  Nationwide  Networks
2.7.3 Technical  Complexities  of  Implementation  &  Operation
2.7.4 Smaller  Coverage  Footprint  Than  LMR  Systems
2.7.5 Delayed  Standardization  &  Commercialization  of  Mission-Critical  Functionality
2.7.6 Dependence  on  New  Chipsets  for  Direct-Mode  Communications

3 Chapter  3:  System  Architecture  &  Technologies  for  Public  Safety  LTE  &  5G  Networks
3.1 Architectural  Components  of  Public  Safety  LTE  &  5G  Networks
3.1.1 UE  (User  Equipment)
3.1.1.1 Smartphones  &  Handportable  Terminals
3.1.1.2 Mobile  &  Vehicular  Routers
3.1.1.3 Fixed  CPEs  (Customer  Premises  Equipment)
3.1.1.4 Tablets  &  Notebook  PCs
3.1.1.5 Smart  Wearables
3.1.1.6 Cellular  IoT  Modules
3.1.1.7 Add-On  Dongles
3.1.2 E-UTRAN  –  LTE  RAN  (Radio  Access  Network)
3.1.2.1 eNBs  –  LTE  Base  Stations
3.1.3 NG-RAN  –  5G  NR  (New  Radio)  Access  Network
3.1.3.1 gNBs  –  5G  NR  Base  Stations
3.1.3.2 en-gNBs  –  Secondary  Node  5G  NR  Base  Stations
3.1.3.3 ng-eNBs  –  Next  Generation  LTE  Base  Stations
3.1.4 Transport  Network
3.1.4.1 Backhaul
3.1.4.2 Fronthaul  &  Midhaul
3.1.5 EPC  (Evolved  Packet  Core)  –  LTE  Mobile  Core
3.1.5.1 SGW  (Serving  Gateway)
3.1.5.2 PGW  (Packet  Data  Network  Gateway)
3.1.5.3 MME  (Mobility  Management  Entity)
3.1.5.4 HSS  (Home  Subscriber  Server)
3.1.5.5 PCRF  (Policy  Charging  and  Rules  Function)
3.1.6 5GC  (5G  Core)/NGC  (Next-Generation  Core)
3.1.6.1 AMF  (Access  &  Mobility  Management  Function)
3.1.6.2 UPF  (User  Plane  Function)
3.1.6.3 SMF  (Session  Management  Function)
3.1.6.4 PCF  (Policy  Control  Function)
3.1.6.5 NEF  (Network  Exposure  Function)
3.1.6.6 NRF  (Network  Repository  Function)
3.1.6.7 UDM  (Unified  Data  Management)
3.1.6.8 UDR  (Unified  Data  Repository)
3.1.6.9 AUSF  (Authentication  Server  Function)
3.1.6.10 AF  (Application  Function)
3.1.6.11 NSSF  (Network  Slice  Selection  Function)
3.1.6.12 NWDAF  (Network  Data  Analytics  Function)
3.1.6.13 Other  Elements
3.1.7 IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
3.1.7.1 IMS  Core  &  VoLTE/VoNR
3.1.7.2 eMBMS/FeMBMS  –  Broadcasting/Multicasting  Over  LTE/5G  Networks
3.1.7.3 ProSe  (Proximity  Services)
3.1.7.4 Group  Communication  &  Mission-Critical  Services
3.1.8 Gateways  for  LTE/5G-External  Network  Interworking
3.2 Key  Enabling  Technologies  &  Concepts
3.2.1 MCPTT  (Mission-Critical  PTT)  Voice  &  Group  Communications
3.2.1.1 Functional  Capabilities  of  the  MCPTT  Service
3.2.1.2 Performance  Comparison  With  LMR  Voice  Services
3.2.2 Mission-Critical  Video  &  Data
3.2.2.1 MCVideo  (Mission-Critical  Video)
3.2.2.2 MCData  (Mission-Critical  Data)
3.2.3 ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.3.1 Direct  Communication  for  Coverage  Extension
3.2.3.2 Direct  Communication  Within  Network  Coverage
3.2.3.3 Infrastructure  Failure  &  Emergency  Scenarios
3.2.3.4 Additional  Capacity  for  Incident  Response  &  Special  Events
3.2.3.5 Discovery  Services  for  Disaster  Relief
3.2.4 IOPS  (Isolated  Operation  for  Public  Safety)
3.2.4.1 Ensuring  Resilience  &  Service  Continuity  for  Critical  Communications
3.2.4.2 Localized  Mobile  Core  &  Application  Capabilities
3.2.4.3 Support  for  Regular  &  Nomadic  Base  Stations
3.2.4.4 Isolated  RAN  Scenarios
3.2.4.4.1 No  Backhaul
3.2.4.4.2 Limited  Backhaul  for  Signaling  Only
3.2.4.4.3 Limited  Backhaul  for  Signaling  &  User  Data
3.2.5 Deployable  LTE  &  5G  Systems
3.2.5.1 Key  Operational  Capabilities
3.2.5.1.1 RAN-Only  Systems  for  Coverage  &  Capacity  Enhancement
3.2.5.1.2 Mobile  Core-Integrated  Systems  for  Autonomous  Operation
3.2.5.1.3 Backhaul  Interfaces  &  Connectivity
3.2.5.2 NIB  (Network-in-a-Box):  Self-Contained  Portable  Systems
3.2.5.2.1 Backpacks
3.2.5.2.2 Tactical  Cases
3.2.5.3 Vehicular-Based  Deployables
3.2.5.3.1 COW  (Cell-on-Wheels)
3.2.5.3.2 COLT  (Cell-on-Light  Truck)
3.2.5.3.3 SOW  (System-on-Wheels)
3.2.5.3.4 VNS  (Vehicular  Network  System)
3.2.5.4 Aerial  Cell  Sites
3.2.5.4.1 Drones
3.2.5.4.2 Balloons
3.2.5.4.3 Other  Aircraft
3.2.5.5 Maritime  Platforms
3.2.6 UE  Enhancements
3.2.6.1 Ruggedization  to  Meet  Critical  Communications  User  Requirements
3.2.6.2 Dedicated  PTT  Buttons  &  Functional  Enhancements
3.2.6.3 Long-Lasting  Batteries
3.2.6.4 HPUE  (High-Power  User  Equipment)
3.2.7 IoT-Focused  Technologies
3.2.7.1 eMTC,  NB-IoT  &  mMTC:  Wide  Area  &  High  Density  IoT  Applications
3.2.7.2 Techniques  for  URLLC
3.2.7.3 TSN  (Time  Sensitive  Networking)
3.2.8 High-Precision  Positioning
3.2.8.1 Support  for  Assisted-GNSS  &  RTK  (Real  Time  Kinematic)  Technology
3.2.8.2 RAN-Based  Positioning  Techniques
3.2.8.3 RAN-Independent  Methods
3.2.9 QPP  (QoS,  Priority  &  Preemption)
3.2.9.1 3GPP-Specified  QPP  Capabilities
3.2.9.1.1 Access  Priority:  ACB  (Access  Class  Barring)
3.2.9.1.2 Admission  Priority  &  Preemption:  ARP  (Allocation  and  Retention  Priority)
3.2.9.1.3 Traffic  Scheduling  Priority:  QCI  (QoS  Class  Indicator)
3.2.9.1.4 Emergency  Scenarios:  eMPS  (Enhanced  Multimedia  Priority  Service)
3.2.9.2 Additional  QPP  Enhancements
3.2.10 E2E  (End-to-End)  Security
3.2.10.1 3GPP-Specified  Security  Architecture
3.2.10.1.1 Device  Security
3.2.10.1.2 Air  Interface  Security
3.2.10.1.3 Mobile  Core  &  Transport  Network  Security
3.2.10.2 Application  Domain  Protection  &  E2E  Encryption
3.2.10.3 Enhancements  to  Support  National  Security  &  Additional  Requirements
3.2.10.4 Quantum  Cryptography  Technologies
3.2.11 Licensed  Spectrum  Sharing  &  Aggregation
3.2.12 Unlicensed  &  Shared  Spectrum  Usage
3.2.12.1 CBRS  (Citizens  Broadband  Radio  Service):  Three-Tiered  Sharing
3.2.12.2 LSA  (Licensed  Shared  Access):  Two-Tiered  Sharing
3.2.12.3 sXGP  (Shared  Extended  Global  Platform):  Non-Tiered  Unlicensed  Access
3.2.12.4 LTE-U/LAA  (License  Assisted  Access)  &  eLAA  (Enhanced  LAA):  Licensed  &  Unlicensed  Spectrum  Aggregation
3.2.12.5 MulteFire
3.2.12.6 5G  NR-U
3.2.13 SDR  (Software-Defined  Radio)
3.2.14 Cognitive  Radio  &  Spectrum  Sensing
3.2.15 Wireless  Connection  Bonding
3.2.16 Network  Sharing  &  Slicing
3.2.16.1 MOCN  (Multi-Operator  Core  Network)
3.2.16.2 MORAN  (Multi-Operator  RAN)
3.2.16.3 GWCN  (Gateway  Core  Network)
3.2.16.4 Service-Specific  PLMN  (Public  Land  Mobile  Network)  IDs
3.2.16.5 DDN  (Data  Network  Name)/APN  (Access  Points  Name)-Based  Isolation
3.2.16.6 DECOR  (Dedicated  Core)
3.2.16.7 eDECOR  (Enhanced  DECOR)
3.2.16.8 5G  Network  Slicing
3.2.17 Software-Centric  Networking
3.2.17.1 NFV  (Network  Functions  Virtualization)
3.2.17.2 SDN  (Software  Defined  Networking)
3.2.18 Small  Cells
3.2.19 C-RAN  (Centralized  RAN)
3.2.20 Satellite  Communications
3.2.21 High  Capacity  Microwave/Millimeter  Wave  Links
3.2.22 Wireline  Fiber  Infrastructure
3.2.23 SON  (Self-Organizing  Networks)
3.2.24 MEC  (Multi-Access  Edge  Computing)
3.2.25 Artificial  Intelligence  &  Machine  Learning
3.2.26 Big  Data  &  Advanced  Analytics to be continued @https://www.supplydemandmarketresearch.com/home/toc_publisher/1350875?code=SDMREL1350875

Contact US

SUPPLY DEMAND MARKET RESEARCH
Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
Ph:12764775910
[email protected]