Categories
Coronavirus COVID-19 Industry Impact Market Price Analysis Market Reports News

The Public Safety LTE & Mobile Broadband Market Opportunities, Challenges, Strategies & Forecasts 2017 – 2030

The “Public Safety LTE & Mobile Broadband Market: 2017 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the global public safety LTE market, besides touching upon the wider LMR and mobile broadband industries. In addition to covering the business case, market drivers, challenges, enabling technologies, applications, key trends, standardization, spectrum availability/allocation, regulatory landscape, deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies for public safety LTE, the report presents comprehensive forecasts for mobile broadband, LMR, and public safety LTE subscriptions from 2017 till 2030. Also covered are unit shipment and revenue forecasts for public safety LTE infrastructure, devices, integration services and management solutions. In addition, the report tracks public safety LTE service revenues, over both private and commercial networks.

Driven by demand for both dedicated and secure MVNO networks, The annual investments in public safety LTE infrastructure will surpass $800 Million by the end of 2017, supporting ongoing deployments in multiple frequency bands across the 400/450 MHz, 700 MHz, 800 MHz, and higher frequency ranges. The market – which includes base stations (eNBs), mobile core and transport network equipment – is further expected to grow at a CAGR of nearly 45% over the next three years. By 2020, these infrastructure investments will be complemented by up to 3.8 Million LTE device shipments, ranging from smartphones and ruggedized handheld terminals to vehicular routers and IoT modules.

Key Findings on “Public Safety LTE & Mobile Broadband Market
– The annual investments in public safety LTE infrastructure will surpass $800 Million by the end of 2017. The market – which includes base stations (eNBs), mobile core and transport network equipment – is further expected to grow at a CAGR of nearly 45% over the next three years.

– By 2020, these infrastructure investments will be complemented by up to 3.8 Million LTE device shipments, ranging from smartphones and ruggedized handheld terminals to vehicular routers and IoT modules.

– A number of dedicated public safety LTE networks are already operational across the globe, ranging from nationwide systems in the oil-rich GCC region to citywide networks in Spain, China, Pakistan, Laos and Kenya.

– At present, more than 45% of all public safety LTE engagements –  including in-service, planned, pilot, and demo networks – utilize spectrum in the 700 MHz range, primarily Bands 14 and 28.

– Due to the unavailability of ProSe-capable chipsets and devices, several public safety stakeholders including the United Kingdom Home Office are considering the continued use of LMR terminals to support direct-mode operation, as they migrate to LTE networks.

– The wider critical communications industry is continuing to consolidate with several prominent M&A deals such as Motorola Solutions’ recent acquisition of carrier-integrated PTT-over-cellular platform provider Kodiak Networks, and Hytera Communications’  takeover of the Sepura Group – a well known provider of TETRA, DMR, P25 and LTE systems.

Get Free PDF Sample Copy of this report back to perceive the structure of the whole report: (Including Full TOC, List of Tables & Figures, Chart) @https://www.supplydemandmarketresearch.com/home/contact/38143?ref=Sample-and-Brochure&toccode=SDMRTE38143

Report Scope

The report covers the following topics:
– Business case for public safety LTE and mobile broadband including market drivers, barriers, deployment models, economics, and funding strategies
– LTE network architecture and key elements comprising devices, RAN, mobile core (EPC, policy and application functions), and transport networks
– Key enabling technologies including group communications, MCPTT, ProSe (Proximity Services), IOPS (Isolated E-UTRAN operation for Public Safety), deployable LTE systems, HPUE (High-Power User Equipment), QPP (QoS, Priority & Preemption), and end-to-end security
– Public safety LTE application usage including mission-critical voice, mobile video, situational awareness, aerial surveillance, bandwidth-intensive field data applications, and emerging applications such as AR (Augmented Reality)
– Case studies of over 20 public safety LTE engagements worldwide, and analysis of  large-scale nationwide projects including FirstNet in the United States, ESN in the United Kingdom, and Safe-Net in South Korea
– Opportunities for commercial mobile operators including spectrum leasing, priority service offerings, BYON (Build Your Own Network) platforms, and operator-branded public safety LTE platforms
– Spectrum availability and allocation for public safety LTE across the global, regional and national regulatory domains
– Standardization, regulatory and collaborative initiatives
– Industry roadmap and value chain
– Profiles and strategies of over 570 ecosystem players including LTE infrastructure & device OEMs, public safety system integrators, and application specialists
– Exclusive interview transcripts from 11 ecosystem players across the public safety LTE value chain: DSB (Directorate for Civil Protection, Norway), Ericsson, Airbus Defence and Space, Harris Corporation, CND (Core Network Dynamics), Bittium, Sepura, Sierra Wireless, Sonim Technologies, Kodiak Networks, and Soliton Systems
– Strategic recommendations for LMR equipment suppliers, public safety system integrators, LTE infrastructure, device & chipset suppliers, public safety agencies & stakeholders, and commercial & private mobile operators
– Market analysis and forecasts from 2017 till 2030

Report Coverage

Public Safety LTE Infrastructure
Submarkets
– RAN (Radio Access Network)
– Mobile Core (EPC, Policy & Application Functions)
– Mobile Backhaul & Transport

RAN Base Station (eNB) Mobility Categories
– Fixed Base Stations
– Deployable Base Stations

RAN Base Station (eNB) Cell Size Categories
– Macrocells
– Small Cells

Deployable RAN Base Station (eNB) Form Factor Categories
– NIB (Network-in-a-Box)
– Vehicular Platforms
– Airborne Platforms
– Maritime Platforms

Mobile Backhaul & Transport Network Technology Categories
– Fiber & Wireline
– Microwave
– Satellite

Public Safety LTE Management & Integration Solutions
Submarkets
– Network Integration & Testing
– Device Management & User Services
– Managed Services, Operations & Maintenance
– Cybersecurity

Public Safety LTE Devices
Submarkets
– Private LTE
– Commercial LTE

Form Factor Categories
– Smartphones & Handportable Terminals
– Vehicle-Mounted Routers & Terminals
– Stationary CPEs
– Tablets & Notebook PCs
– USB Dongles, Embedded IoT Modules & Others

Public Safety LTE Subscriptions & Service Revenue
Submarkets
– Private LTE
– Commercial LTE

Public Safety Broadband over Private Mobile Networks
Submarkets
– Private LTE
– Private WiMAX

Public Safety Broadband Subscriptions over Commercial Mobile Networks
Submarkets
– 3G
– WiMAX
– LTE

Mobile Broadband Subscriptions
Submarkets
– 3G
– WiMAX
– LTE
– 5G NR (New Radio)

LMR Subscriptions
Submarkets
– Analog
– DMR
– dPMR, NXDN & PDT
– P25
– TETRA
– Tetrapol
– Others

LMR Narrowband Data Subscriptions
Submarkets
– P25 – Phase 1
– P25 – Phase 2
– TETRA
– TEDS
– Tetrapol
– Others

Public Safety LTE Applications
Submarkets
– Mission-Critical HD Voice & Group Communications
– Video & High-Resolution Imagery
– Messaging & Presence Services
– Secure Mobile Broadband Access
– Location Services & Mapping
– Enhanced CAD (Computer Aided Dispatching)
– Situational Awareness
– Telemetry, Control and Remote Diagnostics
– AR (Augmented Reality) & Emerging Applications

Regional Segmentation
The following regional markets are covered:
– Asia Pacific
– Eastern Europe
– Latin & Central America
– Middle East & Africa
– North America
– Western Europe

Key Questions Answered
The report provides answers to the following key questions:
– How big is the public safety LTE opportunity?
– What trends, challenges and barriers are influencing its growth?
– How is the market evolving by segment and region?
– What will the market size be in 2020 and at what rate will it grow?
– Which regions and submarkets will see the highest percentage of growth?
– How does standardization impact the adoption of LTE for public safety?
– What is the status of dedicated public safety LTE networks and secure MVNO offerings across the globe?
– When will the public safety sector witness the large-scale commercialization of key enabling technologies such as MCPTT, ProSe, IOPS, and HPUE?
– What opportunities exist for commercial LTE service providers and private LMR network operators?
– What are the prospects of NIB (Network-in-a-Box), vehicular, airborne and maritime deployable LTE platforms?
– Is there a substantial market opportunity for public safety LTE networks operating in Band 31 (450 MHz), and newer frequency bands  such as Bands 68 and 72?
– How can public safety stakeholders leverage unused spectrum capacity to ensure the economic viability of dedicated LTE networks?
– Who are the key market players and what are their strategies?
– What strategies should system integrators, vendors, and mobile operators adopt to remain competitive?

Grab Best Discount on This Market research report [Single User ]| Multi User | company Users] @https://www.supplydemandmarketresearch.com/home/contact/38143?ref=Discount&toccode=SDMRTE38143

Table of Content

1  Chapter  1:  Introduction
1.1  Executive  Summary
1.2  Topics  Covered
1.3  Forecast  Segmentation
1.4  Key  Questions  Answered
1.5  Key  Findings
1.6  Methodology
1.7  Target  Audience
1.8  Companies  &  Organizations  Mentioned

2  Chapter  2:  An  Overview  of  the  Public  Safety  Mobile  Broadband  Market
2.1  Narrowband  LMR  (Land  Mobile  Radio)  Systems  in  Public  Safety
2.1.1  LMR  Market  Size
2.1.1.1  Analog  LMR
2.1.1.2  DMR
2.1.1.3  dPMR,  NXDN  &  PDT
2.1.1.4  P25
2.1.1.5  TETRA
2.1.1.6  Tetrapol
2.1.1.7  Other  LMR  Technologies
2.1.2  The  Limitations  of  LMR  Networks  for  Non-Voice  Services
2.2  Adoption  of  Commercial  Mobile  Broadband  Technologies  for  Public  Safety
2.2.1  Why  Use  Commercial  Mobile  Broadband  Technologies?
2.2.2  The  Perceived  Role  of  Mobile  Broadband  in  Public  Safety  Scenarios
2.2.2.1  Partnerships  with  Commercial  Mobile  Operators
2.2.2.2  Private  LTE  and  WiMAX  Networks
2.2.3  Can  Mobile  Broadband  Technologies  Replace  LMR  Systems?
2.2.4  How  Big  is  the  Commercial  Mobile  Broadband  Market?
2.2.5  Will  the  Public  Safety  Witness  the  Same  Level  of  Growth  as  the  Consumer  Sector?
2.2.6  What  are  the  Growth  Drivers?
2.3  Why  LTE?
2.3.1  Performance  Metrics
2.3.2  Coexistence,  Interoperability  and  Spectrum  Flexibility
2.3.3  A  Thriving  Ecosystem
2.3.4  Economic  Feasibility
2.4  Public  Safety  LTE  Technology  &  Architecture
2.4.1  UE  (User  Equipment)
2.4.1.1  Smartphones  &  Handportable  Terminals
2.4.1.2  Vehicle-Mounted  Routers  &  Terminals
2.4.1.3  Stationary  CPEs
2.4.1.4  Tablets  &  Notebook  PCs
2.4.1.5  USB  Dongles,  Embedded  IoT  Modules  &  Others
2.4.2  E-UTRAN  –  The  LTE  RAN  (Radio  Access  Network)
2.4.2.1  eNB  Base  Stations
2.4.2.2  TDD  vs.  FDD
2.4.3  Transport  Network
2.4.4  EPC  (Evolved  Packet  Core)  –  The  LTE  Mobile  Core
2.4.4.1  SGW  (Serving  Gateway)
2.4.4.2  PGW  (Packet  Data  Network  Gateway)
2.4.4.3  MME  (Mobility  Management  Entity)
2.4.4.4  HSS  (Home  Subscriber  Server)
2.4.4.5  PCRF  (Policy  Charging  and  Rules  Function)
2.4.5  IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
2.4.5.1  IMS  Core  &  VoLTE
2.4.5.2  eMBMS  (Enhanced  Multimedia  Broadcast  Multicast  Service)
2.4.5.3  ProSe  (Proximity  Services)
2.4.5.4  Group  Communication  &  Mission-Critical  Services
2.4.6  Gateways  for  LTE-LMR  Interworking
2.5  LTE-Advanced  &  5G:  Implications  for  Public  Safety
2.5.1  The  Move  Towards  LTE-Advanced  Networks
2.5.2  LTE  Advanced  Pro:  Accelerating  Public  Safety  LTE  Rollouts
2.5.3  5G  Requirements:  Looking  Towards  the  Future
2.5.4  5G  Applications  for  Public  Safety
2.6  Support  for  Roaming  in  Public  Safety  LTE  Networks
2.6.1  Inter-System  Roaming
2.6.2  Intra-System  Roaming  with  External  LTE  Networks
2.7  Public  Safety  LTE  Deployment  Models
2.7.1  Private  Public  Safety  LTE
2.7.2  Shared  Commercial  Public  Safety  LTE:  Private-Public  Partnerships
2.7.3  Public  Safety  LTE  Access  over  Commercial  Mobile  Networks
2.7.4  Hosted-Core  Public  Safety  LTE  Networks
2.8  Funding  Models  for  Private  Public  Safety  LTE  Network  Deployments
2.8.1  BOO  (Built,  Owned  and  Operated)  by  Integrator/Vendor
2.8.2  Owned  and  Operated  by  the  Government  Authority
2.8.3  Local  Agency  Hosted  Core
2.8.4  Multiple  Networks
2.9  Market  Growth  Drivers
2.9.1  Higher  Throughput  and  Low  Latency
2.9.2  Economic  Feasibility
2.9.3  Bandwidth  Flexibility
2.9.4  Spectral  Efficiency
2.9.5  Regional  Interoperability
2.9.6  Lack  of  Competition  from  Other  Standards
2.9.7  Endorsement  from  the  Public  Safety  Community
2.9.8  Commitments  by  Infrastructure  and  Device  Vendors
2.9.9  QoS  (Quality  of  Service),  Priority  &  Preemption  Provisioning
2.9.10  Group  Voice  &  Multimedia  Communications  Support
2.10  Market  Barriers
2.10.1  Spectrum  Allocation
2.10.2  Budgetary  Issues
2.10.3  Delayed  Standardization
2.10.4  Dependency  on  New  Chipsets  &  Devices  for  Dedicated  Public  Safety  Features
2.10.5  Smaller  Coverage  Footprint  than  LMR  Systems

3  Chapter  3:  Key  Enabling  Technologies  for  Public  Safety  LTE
3.1  Mission-Critical  Voice  &  Group  Communications
3.1.1  Group  Communications
3.1.1.1  GCSE  (Group  Communication  System  Enablers)
3.1.1.2  eMBMS  (Multimedia  Broadcast  Multicast  Service)
3.1.1.3  Additional  Group-Based  Enhancements
3.1.2  MCPTT  (Mission-Critical  PTT)
3.1.2.1  Architecture  &  Functional  Capabilities
3.1.2.2  Performance  Comparison  with  LMR  Voice  Services
3.1.3  Mission-Critical  Data  &  Video
3.2  D2D  (Device-to-Device)  Functionality
3.2.1  ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.2  ProSe  Service  Classification
3.2.2.1  Discovery
3.2.2.2  Direct  Communication
3.2.3  Public  Safety  Applications  for  ProSe
3.2.3.1  Direct  Communication  for  Coverage  Extension
3.2.3.2  Direct  Communication  within  Network  Coverage
3.2.3.3  Infrastructure  Failure  &  Emergency  Situations
3.2.3.4  Additional  Capacity  for  Incident  Response  &  Special  Events
3.2.3.5  Discovery  Services  for  Disaster  Relief
3.3  IOPS  (Isolated  E-UTRAN  Operation  for  Public  Safety)
3.3.1  Ensuring  Resilience  and  Service  Continuity  for  Public  Safety  LTE  Users
3.3.2  Localized  EPC  &  Application  Capabilities
3.3.3  Support  for  Regular  &  Nomadic  eNBs
3.3.4  Isolated  E-UTRAN  Scenarios
3.3.4.1  No  Backhaul
3.3.4.2  Limited  Backhaul  for  Signaling  Only
3.3.4.3  Limited  Backhaul  for  Signaling  &  User  Data
3.4  Deployable  LTE  Systems
3.4.1  Key  Operational  Capabilities
3.4.1.1  eNB-Only  Systems  for  Coverage  &  Capacity  Enhancement
3.4.1.2  Mobile  Core  Integrated  Systems  for  Autonomous  Operation
3.4.1.3  Backhaul  Connectivity
3.4.2  NIB  (Network-in-a-Box):  Self-Contained  Portable  Systems
3.4.2.1  Backpacks
3.4.2.2  Tactical  Cases
3.4.3  Vehicular  Platforms
3.4.3.1  COW  (Cell-on-Wheels)
3.4.3.2  COLT  (Cell-on-Light  Truck)
3.4.3.3  SOW  (System-on-Wheels)
3.4.3.4  VNS  (Vehicular  Network  System)
3.4.4  Airborne  Platforms
3.4.4.1  Drones
3.4.4.2  Balloons
3.4.4.3  Other  Aircraft
3.4.5  Maritime  Platforms
3.5  UE  Enhancements
3.5.1  Ruggedization  for  Meet  Public  Safety  Usage  Requirements
3.5.2  Dedicated  PTT-Buttons  &  Functional  Enhancements
3.5.3  Long-Lasting  Batteries
3.5.4  HPUE  (High-Power  User  Equipment)
3.6  QPP  (QoS,  Priority  &  Preemption)
3.6.1  3GPP  Specified  QPP  Capabilities
3.6.1.1  Access  Priority:  ACB  (Access  Class  Barring)
3.6.1.2  Admission  Priority  &  Preemption:  ARP  (Allocation  and  Retention  Priority)
3.6.1.3  Traffic  Scheduling  Priority:  QCI  (QoS  Class  Indicator)
3.6.1.4  Emergency  Scenarios:  eMPS  (Enhanced  Multimedia  Priority  Service)
3.6.2  Additional  QPP  Enhancements
3.7  End-to-End  Security
3.7.1  3GPP  Specified  LTE  Security  Architecture
3.7.1.1  Device  Security
3.7.1.2  Air  Interface  &  E-UTRAN  Security
3.7.1.3  Mobile  Core  &  Transport  Network  Security
3.7.2  Application  Domain  Protection  &  E2EE  (End-to-End  Encryption)
3.7.3  Enhancements  to  Support  National  Security  &  Additional  Requirements
3.8  Complimentary  Technologies  &  Concepts
3.8.1  Satellite  Communications
3.8.2  High  Capacity  Microwave  Links
3.8.3  Spectrum  Sharing  &  Aggregation
3.8.4  MOCN  (Multi-Operator  Core  Network)
3.8.5  DECOR  (Dedicated  Core)
3.8.6  Network  Slicing
3.8.7  NFV  (Network  Functions  Virtualization)
3.8.8  SDN  (Software  Defined  Networking)
3.8.9  C-RAN  (Centralized  RAN)
3.8.10  MEC  (Multi-Access  Edge  Computing)

4  Chapter  4:  Review  of  Major  Public  Safety  LTE  Engagements
4.1  FirstNet  (First  Responder  Network)  Authority
4.1.1  Contract  Award
4.1.1.1  Leveraging  AT&T’s  Commercial  LTE  Network  Assets
4.1.1.2  Band  14  Nationwide  Public  Safety  Broadband  Network  Buildout
4.1.1.3  Interoperability  with  Opt-Out  Statewide  Networks
4.1.2  Present  Status
4.1.2.1  Buildout  Activity
4.1.2.2  Disaster  Preparedness  &  Network  Hardening
4.1.2.3  Readiness  of  Deployable  Network  Assets
4.1.2.4  Opt-In  States  &  Territories
4.1.2.5  Alternative  Network  Plans  &  Potential  Opt-Outs
4.1.2.6  App  &  Device  Ecosystem
4.1.3  Pricing  for  FirstNet  Subscription  Packages
4.1.4  Deployment  Plan
4.1.4.1  2017:  IOC  (Initial  Operating  Capability)  Stage  1  &  Initial  Buildout
4.1.4.2  2018  –  2021:  IOC  Stages  2  –  5
4.1.4.3  2022:  FOC  (Final  Operational  Capability)
4.1.4.4  2023  &  Beyond:  Additional  Technology  Upgrades
4.1.5  Key  Applications to be continued @https://www.supplydemandmarketresearch.com/the-public-safety-lte-mobile-broadband-market-38143

Contact US

Supply Demand Market Research
Mr. Charles Lee
302-20 Misssisauga Valley, Missisauga,
L5A 3S1, Toronto, Canada
Ph. +1-276-477-5910
Email [email protected]

 

Categories
News

5G Network Infrastructure Market to aggressively grow at a CAGR of nearly 70%, eventually accounting for $28 Billion in annual spending by the end of 2025

The “5G Wireless Ecosystem: 2017 – 2030 – Technologies, Applications, Verticals, Strategies & Forecasts” report presents an in-depth assessment of the emerging 5G ecosystem including key market drivers, challenges, enabling technologies, usage scenarios, vertical market applications, mobile operator deployment commitments, case studies, spectrum availability/allocation, standardization, research initiatives and vendor strategies. The report also presents forecasts for 5G investments and operator services.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a 5G deployment tracking database covering over 60 global 5G trials, demos and commercial deployment commitments.

Despite the lack of sufficient LTE coverage in parts of the world, mobile operators and vendors have already embarked on R&D initiatives to develop 5G, the next evolution in mobile networks. 5G is expected to provide a single network environment to deliver not only existing mobile broadband and IoT services, but also new innovations such as self-driving cars, cloud robotics, 3D holographic tele presence and remote surgery with haptic feedback.

Topics Covered
The report covers the following topics:
– 5G NR (New Radio) and NextGen (Next Generation) system architecture
– Market drivers and barriers to the adoption of 5G networks
– 5G requirements, usage scenarios, vertical markets and applications
– Key enabling technologies including air interface design, higher frequency radio access, advanced antenna systems, flexible duplex schemes, D2D (Device-to-Device) connectivity, dynamic spectrum access, self-backhauling and network slicing
– Complementary concepts including NFV, SDN, hyperscale data centers, Cloud RAN, satellite communications and aerial networking platforms
– Case studies and review of mobile operator 5G commitments
– 5G standardization, development and research initiatives
– Analysis of spectrum availability and allocation strategies for 5G networks
– Competitive assessment of vendor strategies
– Review of investments on R&D and pre-standards 5G networks
– Standardized 5G infrastructure, user equipment and operator service forecasts till 2030

Get Free PDF Sample Copy of this report back to perceive the structure of the whole report: (Including Full TOC, List of Tables & Figures, Chart) https://www.supplydemandmarketresearch.com/home/contact/38152?ref=Sample-and-Brochure&toccode=SDMRTE38152

Report Scope

Market forecasts are provided for each of the following submarkets and their subcategories:

5G R&D Investments
– New Air Interface & Millimeter Wave Radio Access
– MIMO, Beamforming & Advanced Antenna Technologies
– Spectrum Sharing, Aggregation & Interference Management
– Virtualization & Cloud RAN
– Network Slicing & Other Technologies

Pre-Standards 5G Network Investments
– Pre-Standards Base Stations
– Pre-Standards User Equipment
– Transport Networking & Other Investments

Standardized 5G Infrastructure Investments
– 5G NR (New Radio)
§ Distributed Macrocell Base Stations
§ Small Cells
§ RRHs (Remote Radio Heads)
§ C-RAN BBUs (Baseband Units)
– NextGen (Next Generation) Core Network
– Fronthaul & Backhaul Networking

Standardized 5G User Equipment Investments
– Handsets
– Tablets
– Embedded IoT Modules
– USB Dongles
– Routers

5G Operator Services
– Subscriptions
– Service Revenue

Regional Segmentation
– Asia Pacific
– Eastern Europe
– Latin & Central America
– Middle East & Africa
– North America
– Western Europe

Grab Best Discount on This Report [Single User | Multi User | company Users] @ https://www.supplydemandmarketresearch.com/home/contact/38152?ref=Discount&toccode=SDMRTE38152

Key Questions Answered
The report provides answers to the following key questions:
– How big is the opportunity for 5G network infrastructure, user equipment and operator services?
– What trends, challenges and barriers will influence the development and adoption of 5G?
– How will 5G drive the adoption of AR (Augmented Reality)/VR (Virtual Reality) applications such as 3D holographic telepresence and 360 degree streaming of live events?
– How have advanced antenna and chip technologies made it possible to utilize millimeter wave spectrum for mobile communications in 5G networks?
– How can non-orthogonal multiple access schemes such as RSMA (Resource Spread Multiple Access) enable 5G networks to support higher connection densities for Millions of IoT devices?
– What will be the number of 5G subscriptions in 2019 and at what rate will it grow?
– Which regions and countries will be the first to adopt 5G?
– Which frequency bands are most likely to be utilized by 5G networks?
– Who are the key 5G vendors and what are their strategies?
– Will 5G networks rely on a disaggregated RAN architecture?
– How will 5G impact the fiber industry?
– Will satellite communications and aerial networking platforms play a wider role in 5G networks?

Key Findings
The Unites States and South Korea are spearheading early investments in pre-standards 5G trial networks, as mobile operators rush to be the first to offer 5G networks. It is estimated that by the end of 2017, pre-standards 5G network investments are expected to account for over $250 Million.

Following completion of the 3GPP’s first phase of 5G specifications in March 2018, It is estimated expects that early adopters across the globe will simultaneously begin commercializing  5G services in 2019.

Between 2019 and 2025, we expect the 5G network infrastructure market to aggressively grow at a CAGR of nearly 70%, eventually accounting for $28 Billion in annual spending by the end of 2025.

Although early 5G R&D investments have primarily targeted the radio access segment, network-slicing has recently emerged as necessary “end-to-end” capability to guarantee performance for different 5G applications which may have contrasting requirements.

In order to support diverse usage scenarios, 5G networks are expected to utilize a variety of frequency bands ranging from established sub-6 GHz cellular bands to millimeter wave spectrum.

Contact US

Supply Demand Market Research
Mr. Charles Lee
302-20 Misssisauga Valley, Missisauga,
L5A 3S1, Toronto, Canada
Ph. +1-276-477-5910
Email [email protected]

Categories
News

Private LTE & 5G network infrastructure market an $8 Billion opportunity

The latest research report indicates that annual investments in private LTE and 5G network infrastructure – which includes RAN (Radio Access Network), mobile core and transport network equipment – will reach $8 Billion by the end of 2023.

With the standardization of features such as MCX (Mission-Critical PTT, Video & Data) services and URLCC (Ultra-Reliable Low-Latency Communications) by the 3GPP, LTE and 5G NR (New Radio) networks are rapidly gaining recognition as an all-inclusive critical communications platform for the delivery of both mission and business critical applications.

By providing authority over wireless coverage and capacity, private LTE and 5G networks ensure guaranteed and secure connectivity, while supporting a wide range of applications – ranging from PTT group communications and real-time video delivery to wireless control and automation in industrial environments. Organizations across the critical communications and industrial IoT (Internet of Things) domains – including public safety agencies, militaries, utilities, oil & gas companies, mining groups, railway & port operators, manufacturers and industrial giants – are making sizeable investments in private LTE networks.

Ask for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350876?ref=Discount&toccode=SDMREL1350876

This 1,200-plus page report is the most comprehensive publication on the private LTE and 5G network market. In addition to detailed market size projections, it profiles more than 600 ecosystem players and covers over 40 case studies of private LTE and 5G networks, as well as analysis of hundreds of other private cellular networks.

The very first private 5G networks are also beginning to be deployed to serve a diverse array of usage scenarios spanning from connected factory robotics and massive-scale sensor networking to the control of AVGs (Automated Guided Vehicles) and AR/VR (Augmented & Virtual Reality). For example, Daimler’s Mercedes-Benz Cars division is establishing a local 5G network to support automobile production processes at its “Factory 56” in Sindelfingen, while the KMA (Korea Military Academy) is installing a dedicated 5G network in its northern Seoul campus to facilitate mixed reality-based military training programs – with a primary focus on shooting and tactical simulations.

In addition, with the emergence of neutral-host small cells, multi-operator connectivity and unlicensed/shared spectrum access schemes,  the use of private LTE and 5G networks in enterprise buildings, campuses and public venues is expected to grow significantly over the coming years. The practicality of spectrum sharing schemes such as the three-tiered CBRS (Citizens Broadband Radio Service) framework and Japan’s unlicensed sXGP (Shared Extended Global Platform) has already been proven with initial rollouts in locations such as corporate campuses, golf courses, race tracks, stadiums, airports and warehouses.

A number of independent neutral-host and wholesale operators are also stepping up with pioneering business models to provide LTE and 5G connectivity services to both mobile operators and enterprises, particularly in indoor settings and locations where it is technically or economically not feasible for traditional operators to deliver substantial wireless coverage and capacity.

Expected to reach $4.7 Billion in annual spending by the end of 2020, private LTE and 5G networks are increasingly becoming the preferred approach to deliver wireless connectivity for critical communications, industrial IoT, enterprise & campus environments, and public venues.  The market will further grow at a CAGR of 19% between 2020 and 2023, eventually accounting for nearly $8 Billion by the end of 2023.

According to our estimates that as much as 30% of these investments – approximately $2.5 Billion – will be directed towards the build-out of private 5G networks which will become preferred wireless connectivity medium to support the ongoing Industry 4.0 revolution for the automation and digitization of factories, warehouses, ports and other industrial premises, in addition to serving other verticals.

The “Private LTE & 5G Network Ecosystem: 2020 – 2030 – Opportunities, Challenges, Strategies, Industry Verticals & Forecasts” report presents an in-depth assessment of the private LTE and 5G network ecosystem including market drivers, challenges, enabling technologies, vertical market opportunities, applications, key trends, standardization, spectrum availability/allocation, regulatory landscape, deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents forecasts for private LTE and 5G network infrastructure investments from 2020 till 2030. The forecasts cover three submarkets, two air interface technologies, 10 vertical markets and six regions.

Request for [email protected]https://www.supplydemandmarketresearch.com/home/contact/1350876?ref=Sample-and-Brochure&toccode=SDMREL1350876

Table  of  Contents
1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  Private  LTE/5G  Networks
2.1 Private  Wireless  Networks
2.1.1 Addressing  the  Needs  of  the  Critical  Communications  Industry
2.1.2 The  Limitations  of  LMR  (Land  Mobile  Radio)  Networks
2.1.3 Growing  Use  of  Commercial  Mobile  Broadband  Technologies
2.1.4 Connectivity  Requirements  for  the  Industrial  IoT  (Internet  of  Things)
2.1.5 Localized  Mobile  Networks  for  Buildings,  Campuses  &  Public  Venues
2.2 LTE  &  5G  for  Private  Networking
2.2.1 Why  LTE  &  5G?
2.2.2 Performance  Metrics
2.2.3 Coexistence,  Interoperability  and  Spectrum  Flexibility
2.2.4 A  Thriving  Ecosystem  of  Chipsets,  Devices  &  Network  Equipment
2.2.5 Economic  Feasibility  of  Operation
2.2.6 Moving  Towards  LTE-Advanced  &  LTE-Advanced  Pro
2.2.7 Private  LTE  Support  in  LTE-Advanced  Pro
2.2.8 5G  NR  (New  Radio)  Capabilities  &  Usage  Scenarios
2.2.8.1 eMBB  (Enhanced  Mobile  Broadband)
2.2.8.2 URLCC  (Ultra-Reliable  Low-Latency  Communications)
2.2.8.3 mMTC  (Massive  Machine-Type  Communications)
2.3 Private  LTE  &  5G  Network  Operational  Models
2.3.1 Independent  Private  Network
2.3.2 Managed  Private  Network
2.3.3 Shared  Core  Private  Network
2.3.4 Hybrid  Commercial-Private  Network
2.3.5 Private  MVNO:  Commercial  Network  with  a  Private  Mobile  Core
2.3.6 Other  Approaches
2.4 Key  Applications  of  Private  LTE  &  5G  Networks
2.4.1 Secure  &  Seamless  Mobile  Broadband  Access
2.4.2 Bandwidth-Intensive  &  Latency-Sensitive  Field  Applications
2.4.3 Bulk  Multimedia  &  Data  Transfers
2.4.4 In-Building  Coverage  &  Capacity
2.4.5 Seamless  Roaming  &  Mobile  VPN  Access
2.4.6 Mission-Critical  HD  Voice  &  Group  Communications
2.4.7 Video  &  High-Resolution  Imagery
2.4.8 Massive-Scale  Video  Surveillance  &  Analytics
2.4.9 Messaging  &  Presence  Services
2.4.10 Location  Services  &  Mapping
2.4.11 Command  &  Control  Systems
2.4.12 Smart  Grid  Operations
2.4.13 Environmental  Monitoring
2.4.14 Industrial  Automation
2.4.15 Connected  Robotics
2.4.16 Machine  Vision
2.4.17 AR/VR  (Augmented  &  Virtual  Reality)
2.4.18 Telehealth  &  Remote  Surgery
2.4.19 High-Speed  Railway  Connectivity
2.4.20 PIS  (Passenger  Information  Systems)
2.4.21 Delay-Sensitive  Control  of  Railway  Infrastructure
2.4.22 In-Flight  Connectivity  for  Passengers  &  Airline  Operators
2.4.23 Maritime  Connectivity  for  Vessels  &  Offshore  Facilities
2.4.24 Telemetry,  Control  &  Remote  Diagnostics
2.4.25 Unmanned  Ground,  Marine  &  Aerial  Vehicles
2.5 Market  Drivers
2.5.1 Recognition  of  LTE  &  5G  as  the  De-Facto  Platform  for  Wireless  Connectivity
2.5.2 Spectral  Efficiency  &  Bandwidth  Flexibility
2.5.3 Regional  Interoperability  &  Cost  Efficiency
2.5.4 Endorsement  from  the  Critical  Communications  Industry
2.5.5 Emergence  of  Unlicensed  &  Shared  Spectrum  Technologies
2.5.6 Growing  Demand  for  High-Speed  &  Low-Latency  Data  Applications
2.5.7 Limited  Coverage  in  Indoor,  Industrial  &  Remote  Environments
2.5.8 Favorable  Licensing  Schemes  for  Localized  LTE  &  5G  Networks
2.5.9 Control  over  QoS  (Quality-of-Service)
2.5.10 Privacy  &  Security
2.6 Market  Barriers
2.6.1 Lack  of  Licensed  Spectrum  for  Wide-Area  Coverage
2.6.2 Funding  Challenges  for  Large-Scale  Networks
2.6.3 Technical  Complexities  of  Implementation  &  Operation
2.6.4 Smaller  Coverage  Footprint  Than  Legacy  LMR  Systems
2.6.5 Competition  from  IEEE  802.16s,  AeroMACS,  WiGRID  &  Other  Technologies
2.6.6 Delayed  Standardization

3 Chapter  3:  System  Architecture  &  Technologies  for  Private  LTE/5G  Networks
3.1 Architectural  Components  of  Private  LTE  &  5G  Networks
3.1.1 UE  (User  Equipment)
3.1.2 E-UTRAN  –  LTE  RAN  (Radio  Access  Network)
3.1.2.1 eNBs  –  LTE  Base  Stations
3.1.3 NG-RAN  –  5G  NR  (New  Radio)  Access  Network
3.1.3.1 gNBs  –  5G  NR  Base  Stations
3.1.3.2 en-gNBs  –  Secondary  Node  5G  NR  Base  Stations
3.1.3.3 ng-eNBs  –  Next  Generation  LTE  Base  Stations
3.1.4 Transport  Network
3.1.4.1 Backhaul
3.1.4.2 Fronthaul  &  Midhaul
3.1.5 EPC  (Evolved  Packet  Core)  –  The  LTE  Mobile  Core
3.1.5.1 SGW  (Serving  Gateway)
3.1.5.2 PGW  (Packet  Data  Network  Gateway)
3.1.5.3 MME  (Mobility  Management  Entity)
3.1.5.4 HSS  (Home  Subscriber  Server)
3.1.5.5 PCRF  (Policy  Charging  and  Rules  Function)
3.1.6 5GC  (5G  Core)/NGC  (Next-Generation  Core)
3.1.6.1 AMF  (Access  &  Mobility  Management  Function)
3.1.6.2 UPF  (User  Plane  Function)
3.1.6.3 SMF  (Session  Management  Function)
3.1.6.4 PCF  (Policy  Control  Function)
3.1.6.5 NEF  (Network  Exposure  Function)
3.1.6.6 NRF  (Network  Repository  Function)
3.1.6.7 UDM  (Unified  Data  Management)
3.1.6.8 UDR  (Unified  Data  Repository)
3.1.6.9 AUSF  (Authentication  Server  Function)
3.1.6.10 AF  (Application  Function)
3.1.6.11 NSSF  (Network  Slice  Selection  Function)
3.1.6.12 NWDAF  (Network  Data  Analytics  Function)
3.1.6.13 Other  Elements
3.1.7 IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements
3.1.7.1 IMS  Core  &  VoLTE/VoNR
3.1.7.2 eMBMS/FeMBMS  –  Broadcasting/Multicasting  over  LTE/5G  Networks
3.1.7.3 ProSe  (Proximity  Services)
3.1.7.4 Group  Communication  &  Mission-Critical  Services
3.1.8 Gateways  for  LTE/5G-External  Network  Interworking
3.2 Key  Enabling  Technologies  &  Concepts
3.2.1 Critical  Communications
3.2.1.1 MCPTT  (Mission-Critical  PTT)  Voice  &  Group  Communications
3.2.1.2 Mission-Critical  Video  &  Data
3.2.1.3 ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications
3.2.1.4 IOPS  (Isolated  E-UTRAN  Operation  for  Public  Safety)
3.2.1.5 Deployable  LTE  &  5G  Systems
3.2.1.6 UE  Enhancements
3.2.2 Industrial  IoT
3.2.2.1 eMTC,  NB-IoT  &  mMTC:  Wide  Area  &  High  Density  IoT  Applications
3.2.2.2 Techniques  for  URLLC
3.2.2.3 TSN  (Time  Sensitive  Networking)
3.2.3 QPP  (QoS,  Priority  &  Preemption)
3.2.4 High-Precision  Positioning
3.2.5 End-to-End  Security
3.2.6 Quantum  Cryptography  Technologies

3.2.7 Licensed  Spectrum  Sharing  &  Aggregation
3.2.8 Unlicensed  &  Shared  Spectrum  Usage
3.2.8.1 CBRS  (Citizens  Broadband  Radio  Service):  Three-Tiered  Sharing
3.2.8.2 LSA  (Licensed  Shared  Access):  Two-Tiered  Sharing
3.2.8.3 sXGP  (Shared  Extended  Global  Platform):  Non-Tiered  Unlicensed  Access
3.2.8.4 LTE-U/LAA  (License  Assisted  Access)  &  eLAA  (Enhanced  LAA):  Licensed  &  Unlicensed  Spectrum  Aggregation
3.2.8.5 MulteFire
3.2.8.6 5G  NR-U
3.2.9 SDR  (Software-Defined  Radio)
3.2.10 Cognitive  Radio  &  Spectrum  Sensing
3.2.11 Wireless  Connection  Bonding
3.2.12 Network  Sharing  &  Slicing
3.2.12.1 MOCN  (Multi-Operator  Core  Network)
3.2.12.2 DECOR  (Dedicated  Core)
3.2.12.3 Network  Slicing
3.2.13 Software-Centric  Networking
3.2.13.1 NFV  (Network  Functions  Virtualization)
3.2.13.2 SDN  (Software  Defined  Networking)
3.2.14 Small  Cells
3.2.15 C-RAN  (Centralized  RAN)
3.2.16 SON  (Self-Organizing  Networks)
3.2.17 MEC  (Multi-Access  Edge  Computing)
3.2.18 Artificial  Intelligence  &  Machine  Learning
3.2.19 Big  Data  &  Advanced  Analytics

to be continued @https://www.supplydemandmarketresearch.com/home/toc_publisher/1350876?code=SDMREL1350876

Contact US

SUPPLY DEMAND MARKET RESEARCH
Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
Ph:12764775910
[email protected]

Categories
Market Reports News

Critical Communications Market Size, Global Analytical Overview, Key Players, Technologies, Trends and Forecast To 2026

The Global Critical Communications Market report gives a detailed overview of the key market drivers, restraints, and trends and analyzes the way they will affect markets development over the forecast period 2020-2026

This Global Critical Communications Industry 2020 report also gives comprehensive insight of, in-depth overview of the competitive landscape of the Critical Communications Market, Industry Size, Share, Market Productions, Pricing, and Global Revenues 2018-2020 Import-Export Figures & SWOT Analysis, PEST analysis, PORTER analysis and Forecast till 2026

You may request sample of this report to glance through the outline of report coverage that typically includes report description, table of contents, lists of tables and figures, regional taxonomy, competition analysis, strategic developments, and innovations of key market players. All this data is based on the outcome of an extensive research methodology and helps businesses comprehend overall market scenario.

[We have included a section on the Impact of COVID-19, which would Provide you How the Covid-19 Pandemic is Affecting the Global Critical Communications Market]

Get Free Sample PDF of Critical Communications Market @ https://www.crediblemarkets.com/sample-request/critical-communications-market-217086

A holistic study of the market is made by considering a variety of factors, from demographics conditions and business cycles in a particular country to market-specific microeconomic impacts. The study found the shift in market paradigms in terms of regional competitive advantage and the competitive landscape of major players.

Key players in the global Critical Communications market covered in Chapter 4:

Hytera
Ericsson
AT&T
Cobham Wireless
Motorola
ZTE
Ascom
Mentura Group
Inmarsat
Leonardo
Huawei
Telstra
Zenitel
Nokia

In Chapter 11 and 13.3, on the basis of types, the Critical Communications market from 2015 to 2026 is primarily split into:

Analog
Digital

In Chapter 12 and 13.4, on the basis of applications, the Critical Communications market from 2015 to 2026 covers:

Defense & Public Safety
Transport
Utilities
Industrial
Others

Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2015-2026) of the following regions are covered in Chapter 5, 6, 7, 8, 9, 10, 13:

North America (Covered in Chapter 6 and 13)

Europe (Covered in Chapter 7 and 13)

Asia-Pacific (Covered in Chapter 8 and 13)

Middle East and Africa (Covered in Chapter 9 and 13)

South America (Covered in Chapter 10 and 13)

For More Information about this Report Visit @ https://www.crediblemarkets.com/market-analysis/critical-communications-market-217086

Table of Content

Chapter 1 Report Overview

Chapter 2 Global Market Growth Trends

Chapter 3 Value Chain of Critical Communications Market

Chapter 4 Players Profiles

Chapter 5 Global Critical Communications Market Analysis by Regions

Chapter 6 North America Critical Communications Market Analysis by Countries

Chapter 7 Europe Critical Communications Market Analysis by Countries

Chapter 8 Asia-Pacific Critical Communications Market Analysis by Countries

Chapter 9 Middle East and Africa Critical Communications Market Analysis by Countries

Chapter 10 South America Critical Communications Market Analysis by Countries

Chapter 11 Global Critical Communications Market Segment by Types

Chapter 12 Global Critical Communications Market Segment by Applications

Chapter 13 Critical Communications Market Forecast by Regions (2020-2026)

Chapter 14 Appendix

Enquiry before Buying @ https://www.crediblemarkets.com/enquire-request/critical-communications-market-217086

Research objectives:

  • To study and analyze the global Critical Communications consumption (value & volume) by key regions/countries, product type and application, history data from 2015 to 2019, and forecast to 2026.
  • To understand the structure of Critical Communications market by identifying its various sub segments.
  • Focuses on the key global Critical Communications manufacturers, to define, describe and analyze the sales volume, value, market share, market competition landscape, Porter’s five forces analysis, SWOT analysis and development plans in next few years.
  • To analyze the Critical Communications with respect to individual growth trends, future prospects, and their contribution to the total market.
  • To share detailed information about the key factors influencing the growth of the market (growth potential, opportunities, drivers, industry-specific challenges and risks).
  • To project the consumption of Critical Communications submarkets, with respect to key regions (along with their respective key countries).
  • To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market.
  • To strategically profile the key players and comprehensively analyze their growth strategies.

Direct Purchase Report @ https://www.crediblemarkets.com/reports/purchase/critical-communications-market-217086?utf8=%E2%9C%93&license_type=single_user

About Credible Markets

Credible Markets has emerged as a dependable source for the market research needs of businesses within a quick time span. We have collaborated with leading publishers of market intelligence and the coverage of our reports reserve spans all the key industry verticals and thousands of micro markets. The massive repository allows our clients to pick from recently published reports from a range of publishers that also provide extensive regional and country-wise analysis. Moreover, pre-booked research reports are among our top offerings.

Credible Market Press Releases @ https://www.crediblemarkets.com/press_releases

Contact Us

Credible Markets Analytics

99 Wall Street 2124 New York, NY 10005

Phone: +1(929)-450-2887

Email: [email protected]

Website: https://www.crediblemarkets.com