Analysis Forecast Coronavirus COVID-19 Industry Impact Market Price Analysis Market Reports News

The “Wireless Network Infrastructure Ecosystem Market- A $56 Billion Opportunity by 2020

The “Wireless Network Infrastructure Ecosystem: 2017 – 2030 – Macrocell RAN, Small Cells, C-RAN, RRH, DAS, Carrier Wi-Fi, Mobile Core, Backhaul & Fronthaul” report presents an in-depth assessment of the wireless network infrastructure ecosystem including enabling technologies, key trends, market drivers, challenges, investment trends, mobile operator revenue potential, regional CapEx commitments, network rollout strategies, future roadmap, value chain, ecosystem player profiles and vendor market share. The report also presents forecasts for wireless network infrastructure investments from 2017 till 2030. The forecasts cover 11 individual submarkets and 6 regions.

Despite a rapid and persistent decline in standalone macrocell RAN infrastructure spending, The wireless network infrastructure market will grow at a CAGR of 2% between 2017 and 2020. Driven by investments in HetNet infrastructure and 5G NR (New Radio) rollouts – beginning in 2019, the market is expected to be worth $56 Billion in annual spending by 2020, up from $53 Billion in 2017.

Key Insight on The “Wireless Network Infrastructure Ecosystem Market

– Despite a rapid and persistent decline in standalone macrocell RAN infrastructure spending, it is estimated that the wireless network infrastructure market will grow at a CAGR of 2% between 2017 and 2020.

– Driven by investments in HetNet infrastructure and 5G NR rollouts – beginning in 2019, the market is expected to be worth $56 Billion in annual spending by 2020, up from $53 Billion in 2017.

– By the end of 2020, C-RAN, small cells, DAS and carrier Wi-Fi, together with their fronthaul and backhaul segments, will account for more than 45% of all wireless network infrastructure spending.

– With LTE availability increasing worldwide and ongoing upgrades to deliver multi-hundred Megabit and Gigabit-grade services, we estimate that LTE, LTE-Advanced and LTE-Advanced Pro networks will generate more than $950 Billion in annual service revenue by 2020.

– New market players are beginning to emerge as mobile operators accelerate their transition to virtualized network infrastructure. For example, Mavenir Systems’ merger with C-RAN specialist Ranzure Networks and its subsequent acquisition of Brocade’s virtualized mobile core business, has positioned the company as an end-to-end provider of 5G-ready mobile network solutions.

Get Free PDF Sample Copy of this report back to perceive the structure of the whole report: (Including Full TOC, List of Tables & Figures, Chart) @

Report Scope

Market forecasts are provided for each of the following sub-markets and their subcategories:

Standalone Macrocell RAN
Air Interface Technology Segmentation
– 2G & 3G
– 5G NR (New Radio)

Mobile Core
Technology Segmentation
– 3G Packet Core
– HLR (Home Location Register)
– MSS (Mobile Switching Subsystem)
– LTE EPC (Evolved Packet Core)
– WiMAX Mobile Core
– 5G NextGen Core

Macrocell Backhaul
Technology Segmentation
– Ethernet
– Microwave & Millimeter Wave
– Satellite
– WDM (Wavelength Division Multiplexing)
– PON (Passive Optical Network)
– Others

Small Cells
Air Interface Technology Segmentation
– 2G & 3G
– 5G NR

Deployment Model Segmentation
– Indoor
– Outdoor

RAN Architecture Segmentation
– Standalone

Use Case Segmentation
– Residential
– Enterprise
– Urban
– Rural & Suburban

Cell Size Segmentation
– Femtocells
– Picocells
– Microcells

Small Cell Backhaul
Technology Segmentation
– Ethernet
– Microwave
– Millimeter Wave
– Satellite
– Fiber & Others

Carrier Wi-Fi
Submarket Segmentation
– Access Points
– Access Point Controllers

Integration Approach Segmentation
– Standalone Wi-Fi Hotspots
– Managed Wi-Fi Offload

Air Interface Technology Segmentation
– 3G & LTE
– 5G NR

Deployment Model Segmentation
– Indoor
– Outdoor

Cell Size Segmentation
– Small Cells
– Macrocells

Submarket Segmentation
– BBUs (Baseband Units)
– RRHs (Remote Radio Heads)

C-RAN Fronthaul
Technology Segmentation
– Dedicated Fiber
– WDM (Wavelength Division Multiplexing)
– OTN (Optical Transport Network)
– PON (Passive Optical Network)
– Ethernet
– Microwave
– Millimeter Wave
– G.Fast & Others

Deployment Model Segmentation
– Indoor
– Outdoor

Regional Markets
– Asia Pacific
– Eastern Europe
– Latin & Central America
– Middle East & Africa
– North America
– Western Europe

Key Questions Answered
The report provides answers to the following key questions:
– How big is the 2G, 3G, 4G and 5G wireless network infrastructure opportunity?
– What trends, challenges and barriers are influencing its growth?
– How is the ecosystem evolving by segment and region?
– Which submarkets will see the highest percentage of growth?
– What will the market size be in 2020 and at what rate will it grow?
– How will the market shape for small cell, C-RAN, carrier Wi-Fi and DAS deployments?
– How much service revenue will be generated by mobile operator networks?
– When will 2G and 3G infrastructure spending diminish?
– What is the outlook for LTE and 5G infrastructure investments?
– What are the future prospects of millimeter wave technology for backhaul, fronthaul and RAN deployments?
– Who are the key vendors in the market, what is their market share and what are their strategies?
– What strategies should wireless network infrastructure vendors and mobile operators adopt to remain competitive?

Grab Best Discount on This Market research report [Single User ]| Multi User | company Users] @ 

Table of Content

1  Chapter  1:  Introduction
1.1  Executive  Summary
1.2  Topics  Covered
1.3  Forecast  Segmentation
1.4  Key  Questions  Answered
1.5  Key  Findings
1.6  Methodology
1.7  Target  Audience
1.8  Companies  &  Organizations  Mentioned

2  Chapter  2:  An  Overview  of  Wireless  Network  Infrastructure
2.1  What  is  Wireless  Network  Infrastructure?
2.2  2G:  GSM  &  CDMA
2.2.1  2G  Trends  &  Developments
2.2.2  2G  Market  Summary
2.3  3G:  W-CDMA,  TD-SCDMA  &  CDMA2000
2.3.1  3G  Trends  &  Developments
2.3.2  3G  Market  Summary
2.4  4G:  LTE,  LTE-Advanced  &  WiMAX
2.4.1  4G  Trends  &  Developments
2.4.2  4G  Market  Summary
2.5  5G:  IMT-2020  Technologies
2.5.1  5G  Trends  &  Developments
2.5.2  5G  Market  Summary
2.6  Macrocell  RAN
2.6.1  Macrocell  RAN  Trends  &  Developments
2.7  HetNet  RAN
2.7.1  HetNet  RAN  Trends  &  Developments
2.7.2  Small  Cells
2.7.3  C-RAN
2.7.4  DAS
2.7.5  Carrier  Wi-Fi
2.8  Mobile  Core
2.8.1  Mobile  Core  Trends  &  Developments
2.9  Mobile  Backhaul  &  Fronthaul
2.9.1  Mobile  Backhaul  &  Fronthaul  Trends  &  Developments

3  Chapter  3:  Market  Drivers,  Barriers  &  Risks
3.1  Market  Drivers
3.1.1  Mobile  Subscriptions  Growth
3.1.2  Smartphone  &  Connected  Device  Proliferation
3.1.3  Growing  Penetration  of  Mobile  Broadband
3.1.4  Mobile  Data  Traffic  Growth
3.1.5  Interest  from  Vertical  Markets
3.1.6  Reducing  the  TCO  (Total  Cost  of  Ownership)
3.1.7  Replacement  of  Legacy  Infrastructure:  Continued  Growth  in  Transport  Networking
3.1.8  Advances  in  Spectrum  Flexibility  &  Carrier  Aggregation:  Driving  HetNet  Deployments
3.1.9  Strategic  Choice  for  CDMA  &  WiMAX  Operators:  Join  Mainstream  Ecosystem
3.1.10  Addressing  Legacy  Network  Congestion
3.1.11  Bringing  Broadband  to  the  Masses
3.2  Barriers  &  Risks
3.2.1  CapEx  Commitments
3.2.2  Spectrum  Scarcity
3.2.3  RAN  Sharing:  A  Concept  Embraced  by  Mobile  Operators
3.2.4  Operators  Are  Finding  Innovative  Ways  to  Address  Capacity  Issues
3.2.5  Social,  Political,  Economic  and  Environmental  Threats
3.2.6  Country  Specific  Risks
3.3  Key  Strategic  Options  for  Mobile  Operators
3.4  Business  Case  for  Investments  in  New  and  Existing  Technologies
3.4.1  Gain  Operational  Efficiencies  Through  Strategic  Investments
3.4.2  Invest  in  Capacity  for  Increased  Revenue  Opportunities
3.4.3  Deliver  Best  User  Experience
3.4.4  Reduce  Competitive  Threats
3.4.5  Reserve  Network  Capacity  the  M2M  Opportunities
3.4.6  Increase  Customer  Satisfaction
3.4.7  Capitalize  on  Differentiation  Strategies
3.4.8  Evolve  Towards  the  Next  Generation

4  Chapter  4:  Mobile  Network  CapEx  Review
4.1  Global  Mobile  Network  CapEx
4.2  Regional  Split
4.3  Key  Mobile  Operator  Commitments
4.3.1  América  Móvil  Group
4.3.2  AT&T
4.3.3  Bharti  Airtel  Group
4.3.4  China  Mobile
4.3.5  China  Telecom
4.3.6  China  Unicom
4.3.7  DT  (Deutsche  Telekom)
4.3.8  KDDI
4.3.9  LG  Uplus
4.3.10  NTT  DoCoMo
4.3.11  Orange
4.3.12  SK  Telecom
4.3.13  SoftBank  Corporation
4.3.14  Telefónica  Group
4.3.15  Telenor  Group
4.3.16  Telkomsel
4.3.17  TIM  (Telecom  Italia  Mobile)
4.3.18  VEON  (Previously  Vimpelcom)
4.3.19  Verizon  Communications
4.3.20  Vodafone  Group
4.4  Asia  Pacific  Mobile  Network  CapEx
4.5  Eastern  Europe  Mobile  Network  CapEx
4.6  Latin  &  Central  America  Mobile  Network  CapEx
4.7  Middle  East  &  Africa  Mobile  Network  CapEx
4.8  North  America  Mobile  Network  CapEx
4.9  Western  Europe  Mobile  Network  CapEx

5  Chapter  5:  Mobile  Network  Subscriptions  &  Service  Revenue  Review to be continued @

Contact US

Supply Demand Market Research
Mr. Charles Lee
302-20 Misssisauga Valley, Missisauga,
L5A 3S1, Toronto, Canada
Ph. +1-276-477-5910
Email [email protected]

Analysis Forecast Coronavirus COVID-19 Industry Impact Market Reports Market Size

V2X communications technology market will be a $1.2 Billion opportunity by 2022

The latest research report indicates that global spending on V2X (Vehicle-to-Everything) communications technology – based on both  IEEE 802.11p and C-V2X (Cellular V2X) standards – will reach $1.2 Billion annually by the end of 2022.
Commonly referred to as V2X, vehicle-to-everything communications technology allows vehicles to directly communicate with each other, roadside infrastructure, and other road users to deliver an array of benefits in the form of road safety, traffic efficiency, smart mobility, environmental sustainability, and driver convenience. In addition, V2X is also helping pave the way for fully autonomous driving through its unique non line-of-sight sensing capability which allows vehicles to detect potential hazards, traffic, and road conditions from longer distances and sooner than other in-vehicle sensors such as cameras, radar, and LiDAR (Light Detection and Ranging).
Although legacy V2I (Vehicle-to-Infrastructure) technologies are currently in operational use worldwide for ETC (Electronic Toll Collection) and relatively simple V2I applications, advanced V2X systems – capable of supporting V2V (Vehicle-to-Vehicle), V2I and other forms of V2X communications – are beginning to gain broad commercial acceptance with two competing technologies vying for the attention of automakers and regulators:  the commercially mature IEEE 802.11p/DSRC (Dedicated Short Range Communications) standard, and the relatively new 3GPP-defined C-V2X (Cellular V2X) technology which has a forward evolutionary path towards 5G.
This 871 page publication the most comprehensive report on the V2X communications technology market, and will be equally applicable to all automakers, their suppliers, as well as the cellular technology ecosystem.
Request for [email protected]
With an initial focus on road safety and traffic efficiency applications, Toyota and GM (General Motors) have already equipped some of their vehicle models with IEEE 802.11p-based V2X technology in Japan and North America.  Among other commercial commitments, Volkswagen will begin deploying IEEE 802.11p on volume models in Europe starting from 2019, while Geely and Ford plan to integrate C-V2X in their new vehicles by 2021 and 2022 respectively. It is also worth nothing that a number of luxury automakers – including BMW, Daimler, Volkswagen’s subsidiary Audi, and Volvo Cars – already deliver certain V2X-type applications through wide-area cellular connectivity and supporting infrastructure such as appropriately equipped roadwork trailers.
Despite the ongoing 802.11p/DSRC versus C-V2X debate, regulatory uncertainty and other challenges, global spending on V2X communications technology is expected to grow at a CAGR of more than 170% between 2019 and 2022. SNS Telecom & IT predicts that by the end of 2022,  V2X will account for a market worth $1.2 Billion, with an installed base of nearly 6 Million V2X-equipped vehicles worldwide. 
The “V2X (Vehicle-to-Everything) Communications Ecosystem: 2019 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the V2X ecosystem including market drivers, challenges, enabling technologies, application scenarios, use cases, business models, key trends, standardization, spectrum availability/allocation, regulatory landscape, V2X deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents market size forecasts from 2019 till 2030. The forecasts cover four submarkets, two air interface technologies,  10 application categories and five regions.

Request for [email protected]

Table Of Content

1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  V2X  Communications
2.1 What  is  V2X  Communications?
2.2 Key  Characteristics  of  V2X  Communications
2.2.1 Types  of  V2X  Communications V2V  (Vehicle-to-Vehicle) V2I  (Vehicle-to-Infrastructure) V2P/V2D  (Vehicle-to-Pedestrian/Device) V2M  (Vehicle-to-Motorcycle) V2N  (Vehicle-to-Network) V2G  (Vehicle-to-Grid),  V2H  (Vehicle-to-Home)  &  Adjacent-Concepts
2.2.2 Transmission  Modes Direct Multi-Hop Network-Assisted
2.2.3 V2X  Message  Sets  &  Service  Capabilities Periodic  Awareness:  CAM  (Cooperative  Awareness  Message)/BSM  (Basic  Safety  Message)  Part  1 Event  Triggered  Safety  Alerts:  DENM  (Decentralized  Environmental  Notification  Messages)/BSM  Part  2 CPM  (Collective  Perception  Message) MCM  (Maneuver  Coordination  Message) SPaT  (Signal  Phase  &  Timing) MAP  (Map  Data  Message) GNSS  Correction SSM/SRM  (Signal  Status  &  Request  Messages) PSM  (Personal  Safety  Message) IVIM  (Infrastructure-to-Vehicle  Information  Message),  TIM/RSM  (Traveler  Information/Road  Safety  Message) BIM  (Basic  Information/Infrastructure  Message) MCDM  (Multimedia  Content  Dissemination  Message) Video  &  Sensor  Information  Exchange Standard  Voice  &  Data  Services PVD  (Probe  Vehicle  Data) PDM  (Probe  Data  Management) Other  V2X-Specific  Message  Types
2.3 Wireless  Technologies  for  V2X  Communications
2.3.1 IEEE  802.11p/DSRC  (Dedicated  Short  Range  Communications)
2.3.2 C-V2X  (Cellular  V2X)
2.4 V2X  Architecture  &  Key  Elements
2.4.1 Vehicular  OBUs  (On-Board  Units)
2.4.2 Non-Vehicular  V2X-Capable  Devices
2.4.3 RSUs  (Roadside  Units)
2.4.4 V2X  Applications V2X  Application  Software V2X  Middleware  &  Application  Server
2.4.5 V2X  Control  Function  &  Cellular  Network-Specific  Elements
2.4.6 V2X  Security  Subsystem
2.5 Key  Applications  Areas
2.5.1 Road  Safety
2.5.2 Traffic  Management  &  Optimization
2.5.3 Navigation  &  Traveler/Driver  Information
2.5.4 Transit  &  Public  Transport
2.5.5 Commercial  Vehicle  Operations
2.5.6 Emergency  Services  &  Public  Safety
2.5.7 Environmental  Sustainability
2.5.8 Road  Weather  Management
2.5.9 Autonomous  Driving  &  Advanced  Applications
2.5.10 Value-Added  Services
2.6 V2X  Business  Models
2.6.1 B2C  (Business-to-Consumer):  Premium  Charge  for  Non-Safety  Critical  Applications
2.6.2 B2B  (Business-to-Business):  V2X  Capabilities  for  Enterprise  Vehicle  Fleets,  Road  Operators  &  Transportation  Agencies
2.6.3 B2B2X  (Business-to-Business-to-Consumer/Business):  Monetization  Through  Intermediaries
2.7 Market  Drivers
2.7.1 Safety:  Towards  a  Zero-Accident  Environment
2.7.2 Traffic  Efficiency:  Minimizing  Congestion  &  Streamlining  Traffic  Flow
2.7.3 Lessening  the  Environmental  Impact  of  Transportation
2.7.4 Facilitating  the  Adoption  of  Smart  Mobility  Applications
2.7.5 Enabling  Autonomous  &  Convenient  Driving
2.7.6 Economic  &  Societal  Benefits
2.7.7 Government-Led  Efforts  to  Encourage  V2X  Adoption
2.7.8 Maturation  of  Enabling  Wireless  Technologies
2.8 Market  Barriers
2.8.1 Lack  of  Critical  Mass  of  V2X  Equipped  Vehicles
2.8.2 V2X  Mandate  Delays  &  Regulatory  Uncertainties
2.8.3 The  IEEE  802.11p  vs.  C-V2X  Debate
2.8.4 Spectrum  Sharing  &  Harmonization
2.8.5 Security  &  Privacy  Concerns
2.8.6 Technical  Complexity  of  Implementation
2.8.7 Business  Model  Challenges
2.8.8 Public  Acceptance

3 Chapter  3:  Key  Enabling  Technologies  for  V2X  Communications
3.1 Legacy  DSRC/ITS  Technologies
3.1.2 915  MHz/UHF  RFID
3.1.3 Active  DSRC  Systems
3.1.4 HDR  DSRC
3.1.5 ITS  Spot/ETC  2.0
3.1.6 VICS  (Vehicle  Information  and  Communications  System)
3.2 IEEE  802.11p-Based  DSRC  Systems
3.2.1 WAVE  (Wireless  Access  in  Vehicular  Environment)
3.2.2 ITS-G5/C-ITS
3.2.3 ITS  Connect/ARIB  STD-T109
3.2.4 Other  Variants
3.3 C-V2X  Technology
3.3.1 LTE-V2X
3.3.2 5G  NR-V2X
3.3.3 Interfaces  for  C-V2X  Communications PC5/Sidelink  for  Direct  V2V,  V2I  &  V2P  Communications Network-Coordinated  Scheduling:  PC5/Sidelink  Transmission  Mode  3 Distributed  Scheduling:  PC5/Sidelink  Transmission  Mode  4 LTE/NR-Uu  for  V2N  Communications
3.4 Other  Wireless  Technologies
3.5 Complementary  Technologies  &  Concepts
3.5.1 On-Board  Sensors  &  ADAS  (Advanced  Driver  Assistance  Systems) Sensing  Capabilities  for  Safety  &  Awareness Enabling  Sophisticated  ADAS  Applications
3.5.2 Vehicle  Safety  Systems Active  Safety  Systems Passive  Safety  &  Countermeasures
3.5.3 Other  In-Vehicle  Systems HMI  (Human  Machine  Interface)/Display  Systems Augmented  Reality  &  HUDs  (Head-Up-Displays)
3.5.4 GNSS  &  Precise  Positioning Enabling  Lane-Level  Accuracy  for  V2X  Applications
3.5.5 Big  Data  &  Advanced  Analytics Streaming  &  Processing  Massive  Volumes  of  V2X-Generated  Data The  Significance  of  Advanced  Analytics
3.5.6 Artificial  Intelligence  &  Machine  Learning Self-Learning  for  Complex  V2X  Applications Powering  Fully-Autonomous  Vehicles
3.5.7 Cloud  Computing Centralized  Processing  for  Delay-Tolerant  &  Wide-Area  Applications
3.5.8 Edge  Computing Delivering  Localized  Processing  Power  for  Latency-Sensitive  V2X  Applications
3.5.9 Network  Slicing Flexible  Allocation  of  C-V2X  Resources  over  Mobile  Networks to be continued @ 

Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
[email protected]


Private LTE & 5G network infrastructure market an $8 Billion opportunity

The latest research report indicates that annual investments in private LTE and 5G network infrastructure – which includes RAN (Radio Access Network), mobile core and transport network equipment – will reach $8 Billion by the end of 2023.

With the standardization of features such as MCX (Mission-Critical PTT, Video & Data) services and URLCC (Ultra-Reliable Low-Latency Communications) by the 3GPP, LTE and 5G NR (New Radio) networks are rapidly gaining recognition as an all-inclusive critical communications platform for the delivery of both mission and business critical applications.

By providing authority over wireless coverage and capacity, private LTE and 5G networks ensure guaranteed and secure connectivity, while supporting a wide range of applications – ranging from PTT group communications and real-time video delivery to wireless control and automation in industrial environments. Organizations across the critical communications and industrial IoT (Internet of Things) domains – including public safety agencies, militaries, utilities, oil & gas companies, mining groups, railway & port operators, manufacturers and industrial giants – are making sizeable investments in private LTE networks.

Ask for [email protected]

This 1,200-plus page report is the most comprehensive publication on the private LTE and 5G network market. In addition to detailed market size projections, it profiles more than 600 ecosystem players and covers over 40 case studies of private LTE and 5G networks, as well as analysis of hundreds of other private cellular networks.

The very first private 5G networks are also beginning to be deployed to serve a diverse array of usage scenarios spanning from connected factory robotics and massive-scale sensor networking to the control of AVGs (Automated Guided Vehicles) and AR/VR (Augmented & Virtual Reality). For example, Daimler’s Mercedes-Benz Cars division is establishing a local 5G network to support automobile production processes at its “Factory 56” in Sindelfingen, while the KMA (Korea Military Academy) is installing a dedicated 5G network in its northern Seoul campus to facilitate mixed reality-based military training programs – with a primary focus on shooting and tactical simulations.

In addition, with the emergence of neutral-host small cells, multi-operator connectivity and unlicensed/shared spectrum access schemes,  the use of private LTE and 5G networks in enterprise buildings, campuses and public venues is expected to grow significantly over the coming years. The practicality of spectrum sharing schemes such as the three-tiered CBRS (Citizens Broadband Radio Service) framework and Japan’s unlicensed sXGP (Shared Extended Global Platform) has already been proven with initial rollouts in locations such as corporate campuses, golf courses, race tracks, stadiums, airports and warehouses.

A number of independent neutral-host and wholesale operators are also stepping up with pioneering business models to provide LTE and 5G connectivity services to both mobile operators and enterprises, particularly in indoor settings and locations where it is technically or economically not feasible for traditional operators to deliver substantial wireless coverage and capacity.

Expected to reach $4.7 Billion in annual spending by the end of 2020, private LTE and 5G networks are increasingly becoming the preferred approach to deliver wireless connectivity for critical communications, industrial IoT, enterprise & campus environments, and public venues.  The market will further grow at a CAGR of 19% between 2020 and 2023, eventually accounting for nearly $8 Billion by the end of 2023.

According to our estimates that as much as 30% of these investments – approximately $2.5 Billion – will be directed towards the build-out of private 5G networks which will become preferred wireless connectivity medium to support the ongoing Industry 4.0 revolution for the automation and digitization of factories, warehouses, ports and other industrial premises, in addition to serving other verticals.

The “Private LTE & 5G Network Ecosystem: 2020 – 2030 – Opportunities, Challenges, Strategies, Industry Verticals & Forecasts” report presents an in-depth assessment of the private LTE and 5G network ecosystem including market drivers, challenges, enabling technologies, vertical market opportunities, applications, key trends, standardization, spectrum availability/allocation, regulatory landscape, deployment case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents forecasts for private LTE and 5G network infrastructure investments from 2020 till 2030. The forecasts cover three submarkets, two air interface technologies, 10 vertical markets and six regions.

Request for [email protected]

Table  of  Contents
1 Chapter  1:  Introduction
1.1 Executive  Summary
1.2 Topics  Covered
1.3 Forecast  Segmentation
1.4 Key  Questions  Answered
1.5 Key  Findings
1.6 Methodology
1.7 Target  Audience
1.8 Companies  &  Organizations  Mentioned

2 Chapter  2:  An  Overview  of  Private  LTE/5G  Networks
2.1 Private  Wireless  Networks
2.1.1 Addressing  the  Needs  of  the  Critical  Communications  Industry
2.1.2 The  Limitations  of  LMR  (Land  Mobile  Radio)  Networks
2.1.3 Growing  Use  of  Commercial  Mobile  Broadband  Technologies
2.1.4 Connectivity  Requirements  for  the  Industrial  IoT  (Internet  of  Things)
2.1.5 Localized  Mobile  Networks  for  Buildings,  Campuses  &  Public  Venues
2.2 LTE  &  5G  for  Private  Networking
2.2.1 Why  LTE  &  5G?
2.2.2 Performance  Metrics
2.2.3 Coexistence,  Interoperability  and  Spectrum  Flexibility
2.2.4 A  Thriving  Ecosystem  of  Chipsets,  Devices  &  Network  Equipment
2.2.5 Economic  Feasibility  of  Operation
2.2.6 Moving  Towards  LTE-Advanced  &  LTE-Advanced  Pro
2.2.7 Private  LTE  Support  in  LTE-Advanced  Pro
2.2.8 5G  NR  (New  Radio)  Capabilities  &  Usage  Scenarios eMBB  (Enhanced  Mobile  Broadband) URLCC  (Ultra-Reliable  Low-Latency  Communications) mMTC  (Massive  Machine-Type  Communications)
2.3 Private  LTE  &  5G  Network  Operational  Models
2.3.1 Independent  Private  Network
2.3.2 Managed  Private  Network
2.3.3 Shared  Core  Private  Network
2.3.4 Hybrid  Commercial-Private  Network
2.3.5 Private  MVNO:  Commercial  Network  with  a  Private  Mobile  Core
2.3.6 Other  Approaches
2.4 Key  Applications  of  Private  LTE  &  5G  Networks
2.4.1 Secure  &  Seamless  Mobile  Broadband  Access
2.4.2 Bandwidth-Intensive  &  Latency-Sensitive  Field  Applications
2.4.3 Bulk  Multimedia  &  Data  Transfers
2.4.4 In-Building  Coverage  &  Capacity
2.4.5 Seamless  Roaming  &  Mobile  VPN  Access
2.4.6 Mission-Critical  HD  Voice  &  Group  Communications
2.4.7 Video  &  High-Resolution  Imagery
2.4.8 Massive-Scale  Video  Surveillance  &  Analytics
2.4.9 Messaging  &  Presence  Services
2.4.10 Location  Services  &  Mapping
2.4.11 Command  &  Control  Systems
2.4.12 Smart  Grid  Operations
2.4.13 Environmental  Monitoring
2.4.14 Industrial  Automation
2.4.15 Connected  Robotics
2.4.16 Machine  Vision
2.4.17 AR/VR  (Augmented  &  Virtual  Reality)
2.4.18 Telehealth  &  Remote  Surgery
2.4.19 High-Speed  Railway  Connectivity
2.4.20 PIS  (Passenger  Information  Systems)
2.4.21 Delay-Sensitive  Control  of  Railway  Infrastructure
2.4.22 In-Flight  Connectivity  for  Passengers  &  Airline  Operators
2.4.23 Maritime  Connectivity  for  Vessels  &  Offshore  Facilities
2.4.24 Telemetry,  Control  &  Remote  Diagnostics
2.4.25 Unmanned  Ground,  Marine  &  Aerial  Vehicles
2.5 Market  Drivers
2.5.1 Recognition  of  LTE  &  5G  as  the  De-Facto  Platform  for  Wireless  Connectivity
2.5.2 Spectral  Efficiency  &  Bandwidth  Flexibility
2.5.3 Regional  Interoperability  &  Cost  Efficiency
2.5.4 Endorsement  from  the  Critical  Communications  Industry
2.5.5 Emergence  of  Unlicensed  &  Shared  Spectrum  Technologies
2.5.6 Growing  Demand  for  High-Speed  &  Low-Latency  Data  Applications
2.5.7 Limited  Coverage  in  Indoor,  Industrial  &  Remote  Environments
2.5.8 Favorable  Licensing  Schemes  for  Localized  LTE  &  5G  Networks
2.5.9 Control  over  QoS  (Quality-of-Service)
2.5.10 Privacy  &  Security
2.6 Market  Barriers
2.6.1 Lack  of  Licensed  Spectrum  for  Wide-Area  Coverage
2.6.2 Funding  Challenges  for  Large-Scale  Networks
2.6.3 Technical  Complexities  of  Implementation  &  Operation
2.6.4 Smaller  Coverage  Footprint  Than  Legacy  LMR  Systems
2.6.5 Competition  from  IEEE  802.16s,  AeroMACS,  WiGRID  &  Other  Technologies
2.6.6 Delayed  Standardization

3 Chapter  3:  System  Architecture  &  Technologies  for  Private  LTE/5G  Networks
3.1 Architectural  Components  of  Private  LTE  &  5G  Networks
3.1.1 UE  (User  Equipment)
3.1.2 E-UTRAN  –  LTE  RAN  (Radio  Access  Network) eNBs  –  LTE  Base  Stations
3.1.3 NG-RAN  –  5G  NR  (New  Radio)  Access  Network gNBs  –  5G  NR  Base  Stations en-gNBs  –  Secondary  Node  5G  NR  Base  Stations ng-eNBs  –  Next  Generation  LTE  Base  Stations
3.1.4 Transport  Network Backhaul Fronthaul  &  Midhaul
3.1.5 EPC  (Evolved  Packet  Core)  –  The  LTE  Mobile  Core SGW  (Serving  Gateway) PGW  (Packet  Data  Network  Gateway) MME  (Mobility  Management  Entity) HSS  (Home  Subscriber  Server) PCRF  (Policy  Charging  and  Rules  Function)
3.1.6 5GC  (5G  Core)/NGC  (Next-Generation  Core) AMF  (Access  &  Mobility  Management  Function) UPF  (User  Plane  Function) SMF  (Session  Management  Function) PCF  (Policy  Control  Function) NEF  (Network  Exposure  Function) NRF  (Network  Repository  Function) UDM  (Unified  Data  Management) UDR  (Unified  Data  Repository) AUSF  (Authentication  Server  Function) AF  (Application  Function) NSSF  (Network  Slice  Selection  Function) NWDAF  (Network  Data  Analytics  Function) Other  Elements
3.1.7 IMS  (IP-Multimedia  Subsystem),  Application  &  Service  Elements IMS  Core  &  VoLTE/VoNR eMBMS/FeMBMS  –  Broadcasting/Multicasting  over  LTE/5G  Networks ProSe  (Proximity  Services) Group  Communication  &  Mission-Critical  Services
3.1.8 Gateways  for  LTE/5G-External  Network  Interworking
3.2 Key  Enabling  Technologies  &  Concepts
3.2.1 Critical  Communications MCPTT  (Mission-Critical  PTT)  Voice  &  Group  Communications Mission-Critical  Video  &  Data ProSe  (Proximity  Services)  for  D2D  Connectivity  &  Communications IOPS  (Isolated  E-UTRAN  Operation  for  Public  Safety) Deployable  LTE  &  5G  Systems UE  Enhancements
3.2.2 Industrial  IoT eMTC,  NB-IoT  &  mMTC:  Wide  Area  &  High  Density  IoT  Applications Techniques  for  URLLC TSN  (Time  Sensitive  Networking)
3.2.3 QPP  (QoS,  Priority  &  Preemption)
3.2.4 High-Precision  Positioning
3.2.5 End-to-End  Security
3.2.6 Quantum  Cryptography  Technologies

3.2.7 Licensed  Spectrum  Sharing  &  Aggregation
3.2.8 Unlicensed  &  Shared  Spectrum  Usage CBRS  (Citizens  Broadband  Radio  Service):  Three-Tiered  Sharing LSA  (Licensed  Shared  Access):  Two-Tiered  Sharing sXGP  (Shared  Extended  Global  Platform):  Non-Tiered  Unlicensed  Access LTE-U/LAA  (License  Assisted  Access)  &  eLAA  (Enhanced  LAA):  Licensed  &  Unlicensed  Spectrum  Aggregation MulteFire 5G  NR-U
3.2.9 SDR  (Software-Defined  Radio)
3.2.10 Cognitive  Radio  &  Spectrum  Sensing
3.2.11 Wireless  Connection  Bonding
3.2.12 Network  Sharing  &  Slicing MOCN  (Multi-Operator  Core  Network) DECOR  (Dedicated  Core) Network  Slicing
3.2.13 Software-Centric  Networking NFV  (Network  Functions  Virtualization) SDN  (Software  Defined  Networking)
3.2.14 Small  Cells
3.2.15 C-RAN  (Centralized  RAN)
3.2.16 SON  (Self-Organizing  Networks)
3.2.17 MEC  (Multi-Access  Edge  Computing)
3.2.18 Artificial  Intelligence  &  Machine  Learning
3.2.19 Big  Data  &  Advanced  Analytics

to be continued @

Contact US

Mr. Charles Lee
302-20 Misssisauga Valley Blvd, Missisauga, L5A 3S1, Toronto
[email protected]